Literature

[1]

Francesco Witte and Ilja Tuschy. TESPy: Thermal Engineering Systems in Python. Journal of Open Source Software, 5(49):2178, 2020. doi:10.21105/joss.02178.

[2]

Xiao Chen and Xiaoli Hao. Exergy analysis of a ground-coupled heat pump heating system with different terminals. Entropy, 17(4):2328–2340, 2015. doi:10.3390/e17042328.

[3]

Francesco Biscani and Dario Izzo. A parallel global multiobjective framework for optimization: pagmo. Journal of Open Source Software, 5(53):2338, 2020. doi:10.21105/joss.02338.

[4]

Malte Fritz, Jonas Freißmann, and Ilja Tuschy. Open-source web dashboard zur simulation, analyse und bewertung von wärmepumpen. In Tagungsband der zweiten Konferenz zur Norddeutschen Wärmeforschung. Energieforschungsverbund Hamburg (EFH), 2024. URL: https://energieforschungsverbund.hamburg/norddeutsches/zweite-konferenz-zur-norddeutschen-waermeforschung-768742.

[5]

Firdovsi Gasanzade, Francesco Witte, Ilja Tuschy, and Sebastian Bauer. Integration of geological compressed air energy storage into future energy supply systems dominated by renewable power sources. Energy Conversion and Management, 277:116643, 2023. doi:https://doi.org/10.1016/j.enconman.2022.116643.

[6]

Chaofan Chen, Francesco Witte, Ilja Tuschy, Olaf Kolditz, and Haibing Shao. Parametric optimization and comparative study of an organic rankine cycle power plant for two-phase geothermal sources. Energy, 252:123910, 2022. doi:https://doi.org/10.1016/j.energy.2022.123910.

[7]

Nicholas Fry, Jessica Eagle-Bluestone, and Francesco Witte. Computational modeling of organic rankine cycle combined heat and power for sedimentary geothermal exploitation. In Geothermal Resources Council Transactions, 23–47. Geothermal Rising, August 2022. URL: https://www.geothermal-library.org/index.php?mode=pubs&action=view&record=1034577.

[8]

Ian H. Bell, Jorrit Wronski, Sylvain Quoilin, and Vincent Lemort. Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop. Industrial & Engineering Chemistry Research, 53(6):2498–2508, 2014. doi:10.1021/ie4033999.

[9]

O. Knacke, O. Kubaschewski, and K. Hesselmann. Thermochemical Properties of Inorganic Substances. Number Bd. 1 in Thermochemical Properties of Inorganic Substances. Springer-Verlag, 1991. ISBN 9783514003637.

[10]

Francesco Witte, Mathias Hofmann, Julius Meier, Ilja Tuschy, and George Tsatsaronis. Generic and open-source exergy analysis—extending the simulation framework tespy. Energies, 2022. doi:10.3390/en15114087.

[11]

Mathias Hofmann, Francesco Witte, Karim Shawky, Ilja Tuschy, and George Tsatsaronis. Thermal Engineering Systems in Python (TESPy): the implementation and validation of the chemical exergy. In Brian Elmegaard, Enrico Sciubba, Ana M Blanco-Marigorta, Jonas Kjær Jensen, Wiebke Brix Markussen, Wiebke Meesenburg, Nasrin Arjomand Kermani, Tingting Zhu, and René Kofler, editors, Proceedings of ECOS 2022, 257–268. DTU Construct, July 2022.

[12]

Antonio Valero, Miguel A. Lozano, Luis Serra, George Tsatsaronis, Javier Pisa, Christos Frangopoulos, and Michael R. von Spakovsky. CGAM problem: definition and conventional solution. Energy, 19(3):279–286, March 1994. doi:10.1016/0360-5442(94)90112-0.

[13]

Adrian Bejan, George Tsatsaronis, and Michael Moran. Thermal Design and Optimization. Wiley, 1996.

[14]

Hans Dieter Baehr and Kabelac. Stephan. Thermodynamik. Springer Berlin Heidelberg, 2016. doi:10.1007/978-3-662-49568-1.

[15]

Bernd Epple, Reinhard Leithner, Wladimir Linzer, and Heimo Walter, editors. Simulation von Kraftwerken und Feuerungen. Springer Vienna, 2012. doi:10.1007/978-3-7091-1182-6.

[16]

Leopold Böswirth and Sabine Bschorer. Technische Strömungslehre. Vieweg+Teubner Verlag, 2012. doi:10.1007/978-3-8348-8647-7.

[17]

Heimo Walter and Bernd Epple, editors. Numerical Simulation of Power Plants and Firing Systems. Springer Vienna, 2017. doi:10.1007/978-3-7091-4855-6.

[18]

V. A. Medvedev J. D. Cox, D. D. Wagman. CODATA - key values for thermodynamics. Berichte der Bunsengesellschaft für physikalische Chemie, 94(1):93–93, January 1990. doi:10.1002/bbpc.19900940121.

[19]

John R. Rumble. CRC Handbook of Chemistry and Physics. CRC Press, 2021.

[20]

Ilja Tuschy. Thermische Hybridkraftwerke zur Krafterzeugung aus Niedertemperaturwärme. VDI-Verlag, Düsseldorf, 2001.

[21]

Richard Zahoransky, editor. Energietechnik. Springer Fachmedien Wiesbaden, 2019. doi:10.1007/978-3-658-21847-8.

[22]

N. Janotte, G. Feckler, J. Kötter, S. Decker, U. Herrmann, M. Schmitz, and E. Lüpfert. Dynamic performance evaluation of the HelioTrough® collector demonstration loop–towards a new benchmark in parabolic trough qualification. Energy Procedia, 49:109–117, 2014. doi:10.1016/j.egypro.2014.03.012.

[23]

Volker Quaschning. Regenerative Energiesysteme. Carl Hanser Verlag München, 2013.

[24]

GasTurb GmbH. Gasturb 13: design and off-design performance of gas turbines. 2018.

[25]

Walter Traupel. Thermische Turbomaschinen. Springer Berlin Heidelberg, 2001. doi:10.1007/978-3-642-17465-0.

[26]

Marcin Plis and Henryk Rusinowski. Mathematical modeling of an axial compressor in a gas turbine cycle. Journal of Power Technologies, 96(3):194–199, 2016.

[27]

Tatiana Morosuk and George Tsatsaronis. Splitting physical exergy: theory and application. Energy, 167:698–707, 2019. doi:https://doi.org/10.1016/j.energy.2018.10.090.

[28]

Hermann Nirschl. Druckverlust in durchströmten Rohren, pages 1–8. Springer Berlin Heidelberg, Berlin, Heidelberg, 2018. doi:10.1007/978-3-662-52991-1_75-2.

[29]

Fritz Herning and L Zipperer. Calculation of the viscosity of technical gas mixtures from the viscosity of the individual gases. Gas-und Wasserfach, 79:69–73, 1936.

[30]

Joachim Ahrendts. Reference states. Energy, 5(8-9):666–677, August 1980. doi:10.1016/0360-5442(80)90087-0.

[31]

Joachim Ahrendts. Die Exergie chemisch reaktionsfähiger Systeme. Volume 579. VDI-Verlag, 1977.

[32]

Joachim Ahrendts. Die Exergie chemisch reaktionsfähiger Systeme. PhD thesis, Ruhr-Universität Bochum, 1977.

[33]

J. Szargut, D. R. Morris, and F. R. Steward. Exergy analysis of thermal, chemical, and metallurgical processes. Springer-Verlag Berlin Heidelberg, 1988.

[34]

Jan Szargut. Egzergia: poradnik obliczania i stosowania. Wydawnictwo Politechniki Śląskiej, 2007.

[35]

Bhavik R. Bakshi, Timothy G. Gutowski, and Dušan P. Sekulić, editors. Thermodynamics and the Destruction of Resources. Cambridge University Press, 2011. doi:10.1017/CBO9780511976049.

[36]

George Tsatsaronis. Definitions and nomenclature in exergy analysis and exergoeconomics. Energy, 32(4):249 – 253, 2007. doi:10.1016/j.energy.2006.07.002.

[37]

David Kearney and Charles E. Miller. Technical evaluation of project feasibilty for segs vi. 1988. Submitted to Luz Solar Partners VI.

[38]

Frank Lippke. Simulation of the part-load behavior of a 30 mwe segs plant. Technical Report SAND-95-1293, Sandia National Lab., Albuquerque, June 1995. doi:10.2172/95571.

[39]

Peter Lorenzen. Das Wärmenetz als Speicher im Smart Grid: Betriebsführung eines Wärmenetzesin Kombination mit einem stromgeführten Heizkraftwerk. Hochschule für angewandte Wissenschaften Hamburg, 2014. doi:20.500.12738/6561.

[40]

Saeed Sayadi, George Tsatsaronis, and Tatiana Morosuk. Dynamic exergetic assessment of heating and cooling systems in a complex building. Energy Conversion and Management, 183:561–576, 2019. doi:https://doi.org/10.1016/j.enconman.2018.12.090.