# -*- coding: utf-8
"""Module of class CombustionEngine.
This file is part of project TESPy (github.com/oemof/tespy). It's copyrighted
by the contributors recorded in the version control history of the file,
available from its original location
tespy/components/combustion/engine.py
SPDX-License-Identifier: MIT
"""
import numpy as np
from tespy.components.combustion.base import CombustionChamber
from tespy.components.component import component_registry
from tespy.tools import logger
from tespy.tools.data_containers import ComponentCharacteristics as dc_cc
from tespy.tools.data_containers import ComponentProperties as dc_cp
from tespy.tools.data_containers import SimpleDataContainer as dc_simple
from tespy.tools.document_models import generate_latex_eq
from tespy.tools.fluid_properties import s_mix_ph
from tespy.tools.fluid_properties import s_mix_pT
[docs]
@component_registry
class CombustionEngine(CombustionChamber):
r"""
An internal combustion engine supplies power and heat cogeneration.
The combustion engine produces power and heat in cogeneration from fuel
combustion. The combustion properties are identical to the combustion
chamber. Thermal input and power output, heat output and heat losses are
linked with an individual characteristic line for each property.
**Mandatory Equations**
- :py:meth:`tespy.components.combustion.engine.CombustionEngine.fluid_func`
(for cooling water)
- :py:meth:`tespy.components.combustion.engine.CombustionEngine.mass_flow_func`
- :py:meth:`tespy.components.combustion.base.CombustionChamber.combustion_pressure_func`
- :py:meth:`tespy.components.combustion.base.CombustionChamber.stoichiometry`
- :py:meth:`tespy.components.combustion.engine.CombustionEngine.energy_balance_func`
- :py:meth:`tespy.components.combustion.engine.CombustionEngine.tiP_char_func`
- :py:meth:`tespy.components.combustion.engine.CombustionEngine.Q1_char_func`
- :py:meth:`tespy.components.combustion.engine.CombustionEngine.Q2_char_func`
- :py:meth:`tespy.components.combustion.engine.CombustionEngine.Qloss_char_func`
**Optional Equations**
- :py:meth:`tespy.components.combustion.base.CombustionChamber.lambda_func`
- :py:meth:`tespy.components.combustion.base.CombustionChamber.ti_func`
- :py:meth:`tespy.components.combustion.engine.CombustionEngine.Q1_func`
- :py:meth:`tespy.components.combustion.engine.CombustionEngine.Q2_func`
- cooling loops:
- 1 :py:meth:`tespy.components.component.Component.pr_func`
- 2 :py:meth:`tespy.components.component.Component.pr_func`
- 1 :py:meth:`tespy.components.component.Component.zeta_func`
- 2 :py:meth:`tespy.components.component.Component.zeta_func`
Available fuels
- methane, ethane, propane, butane, hydrogen
Inlets/Outlets
- in1, in2 (cooling water), in3, in4 (air and fuel)
- out1, out2 (cooling water), out3 (flue gas)
Image
.. image:: /api/_images/CombustionEngine.svg
:alt: flowsheet of the combustion engine
:align: center
:class: only-light
.. image:: /api/_images/CombustionEngine_darkmode.svg
:alt: flowsheet of the combustion engine
:align: center
:class: only-dark
.. note::
The fuel and the air components can be connected to either of the
inlets.
Parameters
----------
label : str
The label of the component.
design : list
List containing design parameters (stated as String).
offdesign : list
List containing offdesign parameters (stated as String).
design_path : str
Path to the components design case.
local_offdesign : boolean
Treat this component in offdesign mode in a design calculation.
local_design : boolean
Treat this component in design mode in an offdesign calculation.
char_warnings : boolean
Ignore warnings on default characteristics usage for this component.
printout : boolean
Include this component in the network's results printout.
lamb : float, dict
Air to stoichiometric air ratio, :math:`\lambda/1`.
ti : float, dict
Thermal input, (:math:`{LHV \cdot \dot{m}_f}`), :math:`ti/\text{W}`.
P : float, dict, :code:`"var"`
Power output, :math:`P/\text{W}`.
Q1 : float, dict
Heat output 1, :math:`\dot Q/\text{W}`.
Q2 : float, dict
Heat output 2, :math:`\dot Q/\text{W}`.
Qloss : float, dict, :code:`"var"`
Heat loss, :math:`\dot Q_{loss}/\text{W}`.
pr1 : float, dict, :code:`"var"`
Pressure ratio heat outlet 1, :math:`pr/1`.
pr2 : float, dict, :code:`"var"`
Pressure ratio heat outlet 2, :math:`pr/1`.
zeta1 : float, dict, :code:`"var"`
Geometry independent friction coefficient heating loop 1,
:math:`\zeta_1/\frac{1}{\text{m}^4}`.
zeta2 : float, dict, :code:`"var"`
Geometry independent friction coefficient heating loop 2,
:math:`\zeta_2/\frac{1}{\text{m}^4}`.
tiP_char : tespy.tools.characteristics.CharLine, dict
Characteristic line linking fuel input to power output.
Q1_char : tespy.tools.characteristics.CharLine, dict
Characteristic line linking heat output 1 to power output.
Q2_char : tespy.tools.characteristics.CharLine, dict
Characteristic line linking heat output 2 to power output.
Qloss_char : tespy.tools.characteristics.CharLine, dict
Characteristic line linking heat loss to power output.
eta_mech : float
Value of internal efficiency of the combustion engine. This value is
required to determine the (virtual) thermodynamic temperature of heat
inside the combustion engine for the entropy balance calculation.
Default value is 0.85.
Note
----
Parameters available through entropy balance are listed in the respective
method:
- :py:meth:`tespy.components.combustion.engine.CombustionEngine.entropy_balance`
Example
-------
The combustion chamber calculates energy input due to combustion as well as
the flue gas composition based on the type of fuel and the amount of
oxygen supplied. In this example a mixture of methane, hydrogen and
carbondioxide is used as fuel. There are two cooling ports, the cooling
water will flow through them in parallel.
>>> from tespy.components import (Sink, Source, CombustionEngine, Merge,
... Splitter)
>>> from tespy.connections import Connection, Ref
>>> from tespy.networks import Network
>>> import shutil
>>> nw = Network(p_unit='bar', T_unit='C', iterinfo=False)
>>> amb = Source('ambient')
>>> sf = Source('fuel')
>>> fg = Sink('flue gas outlet')
>>> cw_in = Source('cooling water inlet')
>>> sp = Splitter('cooling water splitter', num_out=2)
>>> me = Merge('cooling water merge', num_in=2)
>>> cw_out = Sink('cooling water outlet')
>>> chp = CombustionEngine(label='internal combustion engine')
>>> chp.component()
'combustion engine'
>>> amb_comb = Connection(amb, 'out1', chp, 'in3')
>>> sf_comb = Connection(sf, 'out1', chp, 'in4')
>>> comb_fg = Connection(chp, 'out3', fg, 'in1')
>>> nw.add_conns(sf_comb, amb_comb, comb_fg)
>>> cw_sp = Connection(cw_in, 'out1', sp, 'in1')
>>> sp_chp1 = Connection(sp, 'out1', chp, 'in1')
>>> sp_chp2 = Connection(sp, 'out2', chp, 'in2')
>>> chp1_me = Connection(chp, 'out1', me, 'in1')
>>> chp2_me = Connection(chp, 'out2', me, 'in2')
>>> me_cw = Connection(me, 'out1', cw_out, 'in1')
>>> nw.add_conns(cw_sp, sp_chp1, sp_chp2, chp1_me, chp2_me, me_cw)
The combustion engine produces a power output of 10 MW the oxygen to
stoichiometric oxygen ratio is set to 1. Only pressure ratio 1 is set as
we reconnect both cooling water streams. At the merge all pressure values
will be identical automatically. Reference the mass flow at the splitter
to be split in half.
>>> chp.set_attr(pr1=0.99, P=-10e6, lamb=1.0,
... design=['pr1'], offdesign=['zeta1'])
>>> amb_comb.set_attr(p=5, T=30, fluid={'Ar': 0.0129, 'N2': 0.7553,
... 'CO2': 0.0004, 'O2': 0.2314})
>>> sf_comb.set_attr(T=30, fluid={'CH4': 1})
>>> cw_sp.set_attr(p=3, T=60, m=50, fluid={'H2O': 1})
>>> sp_chp2.set_attr(m=Ref(sp_chp1, 1, 0))
>>> mode = 'design'
>>> nw.solve(mode=mode)
>>> nw.save('tmp')
>>> round(chp.ti.val, 0)
25300000.0
>>> round(chp.Q1.val, 0)
-4980000.0
>>> chp.set_attr(Q1=-4e6, P=None)
>>> mode = 'offdesign'
>>> nw.solve(mode=mode, init_path='tmp', design_path='tmp')
>>> round(chp.ti.val, 0)
17794554.0
>>> round(chp.P.val / chp.P.design, 3)
0.617
>>> chp.set_attr(P=chp.P.design * 0.75, Q1=None)
>>> mode = 'offdesign'
>>> nw.solve(mode=mode, init_path='tmp', design_path='tmp')
>>> round(chp.ti.val, 0)
20550000.0
>>> round(chp.P.val / chp.P.design, 3)
0.75
>>> shutil.rmtree('./tmp', ignore_errors=True)
"""
[docs]
@staticmethod
def component():
return 'combustion engine'
[docs]
def get_parameters(self):
return {
'lamb': dc_cp(
min_val=1, deriv=self.lambda_deriv, func=self.lambda_func,
latex=self.lambda_func_doc, num_eq=1),
'ti': dc_cp(
min_val=0, deriv=self.ti_deriv, func=self.ti_func,
latex=self.ti_func_doc, num_eq=1),
'P': dc_cp(val=-1e6, d=1, max_val=-1),
'Q1': dc_cp(
max_val=-1, deriv=self.Q1_deriv, func=self.Q1_func,
num_eq=1, latex=self.Q1_func_doc),
'Q2': dc_cp(
max_val=-1, deriv=self.Q2_deriv, func=self.Q2_func,
num_eq=1, latex=self.Q2_func_doc),
'Qloss': dc_cp(val=-1e5, d=1, max_val=-1),
'pr1': dc_cp(
min_val=1e-4, max_val=1, num_eq=1, deriv=self.pr_deriv,
latex=self.pr_func_doc,
func=self.pr_func, func_params={'pr': 'pr1'}),
'pr2': dc_cp(
min_val=1e-4, max_val=1, num_eq=1, latex=self.pr_func_doc,
deriv=self.pr_deriv, func=self.pr_func,
func_params={'pr': 'pr2', 'inconn': 1, 'outconn': 1}),
'zeta1': dc_cp(
min_val=0, max_val=1e15, num_eq=1, latex=self.zeta_func_doc,
deriv=self.zeta_deriv, func=self.zeta_func,
func_params={'zeta': 'zeta1'}),
'zeta2': dc_cp(
min_val=0, max_val=1e15, num_eq=1, latex=self.zeta_func_doc,
deriv=self.zeta_deriv, func=self.zeta_func,
func_params={'zeta': 'zeta2', 'inconn': 1, 'outconn': 1}),
'tiP_char': dc_cc(), 'Q1_char': dc_cc(), 'Q2_char': dc_cc(),
'Qloss_char': dc_cc(),
'eta_mech': dc_simple(val=0.85), 'T_v_inner': dc_simple()}
[docs]
def get_mandatory_constraints(self):
constraints = super().get_mandatory_constraints()
constraints.update({
'power_constraints': {
'func': self.tiP_char_func,
'deriv': self.tiP_char_deriv,
'constant_deriv': False, 'latex': self.tiP_char_func_doc,
'num_eq': 1, 'char': 'tiP_char'},
'heat1_constraints': {
'func': self.Q1_char_func,
'deriv': self.Q1_char_deriv,
'constant_deriv': False, 'latex': self.Q1_char_func_doc,
'num_eq': 1, 'char': 'Q1_char'},
'heat2_constraints': {
'func': self.Q2_char_func,
'deriv': self.Q2_char_deriv,
'constant_deriv': False, 'latex': self.Q2_char_func_doc,
'num_eq': 1, 'char': 'Q2_char'},
'heatloss_constraints': {
'func': self.Qloss_char_func,
'deriv': self.Qloss_char_deriv,
'constant_deriv': False, 'latex': self.Qloss_char_func_doc,
'num_eq': 1, 'char': 'Qloss_char'},
})
return constraints
[docs]
@staticmethod
def inlets():
return ['in1', 'in2', 'in3', 'in4']
[docs]
@staticmethod
def outlets():
return ['out1', 'out2', 'out3']
[docs]
def propagate_to_target(self, branch):
inl, outl = self._get_combustion_connections()
inconn = branch["connections"][-1]
if inconn in inl:
return
conn_idx = self.inl.index(inconn)
outconn = self.outl[conn_idx]
branch["connections"] += [outconn]
branch["components"] += [outconn.target]
outconn.target.propagate_to_target(branch)
[docs]
def propagate_wrapper_to_target(self, branch):
inl, outl = self._get_combustion_connections()
inconn = branch["connections"][-1]
if inconn in inl:
if self in branch["components"]:
return
outconn = self.outl[2]
else:
conn_idx = self.inl.index(inconn)
outconn = self.outl[conn_idx]
branch["connections"] += [outconn]
branch["components"] += [self]
outconn.target.propagate_wrapper_to_target(branch)
[docs]
def preprocess(self, num_nw_vars):
if not self.P.is_set:
self.set_attr(P='var')
msg = ('The power output of combustion engines must be set! '
'We are adding the power output of component ' +
self.label + ' as custom variable of the system.')
logger.info(msg)
if not self.Qloss.is_set:
self.set_attr(Qloss='var')
msg = ('The heat loss of combustion engines must be set! '
'We are adding the heat loss of component ' +
self.label + ' as custom variable of the system.')
logger.info(msg)
super().preprocess(num_nw_vars)
self.setup_reaction_parameters()
def _get_combustion_connections(self):
return (self.inl[2:], [self.outl[2]])
[docs]
def energy_balance_func(self):
r"""
Calculate the energy balance of the combustion engine.
Returns
-------
residual : float
Residual value of equation.
.. math::
\begin{split}
0 = & \sum_i \dot{m}_{in,i} \cdot
\left( h_{in,i} - h_{in,i,ref} \right)\\
& - \sum_j \dot{m}_{out,3} \cdot
\left( h_{out,3} - h_{out,3,ref} \right)\\
& + LHV_{fuel} \cdot
\left(\sum_i \left(\dot{m}_{in,i} \cdot x_{fuel,i} \right)-
\dot{m}_{out,3} \cdot x_{fuel,3} \right)\\
& - \dot{Q}_1 - \dot{Q}_2 - P - \dot{Q}_{loss}\\
\end{split}\\
\forall i \in [3,4]
Note
----
The temperature for the reference state is set to 25 °C, thus
the water may be liquid. In order to make sure, the state is
referring to the lower heating value, the necessary enthalpy
difference for evaporation is added.
- Reference temperature: 298.15 K.
- Reference pressure: 1 bar.
"""
res = super().energy_balance_func()
# cooling
for i in range(2):
res -= self.inl[i].m.val_SI * (
self.outl[i].h.val_SI - self.inl[i].h.val_SI
)
# power output and heat loss
res += self.P.val + self.Qloss.val
return res
[docs]
def energy_balance_func_doc(self, label):
"""
Calculate the energy balance of the combustion engine.
Parameters
----------
label : str
Label for equation.
Returns
-------
latex : str
LaTeX code of equations applied.
"""
latex = (
r'\begin{split}' + '\n'
r'0 = & \sum_i \dot{m}_{\mathrm{in,}i} \cdot\left( '
r'h_{\mathrm{in,}i} - h_{\mathrm{in,}i\mathrm{,ref}} \right) -'
r'\dot{m}_\mathrm{out,3}\cdot\left( h_\mathrm{out,3}'
r' - h_\mathrm{out,3,ref}\right)\\' + '\n'
r'& + LHV_{fuel} \cdot \left(\sum_i \dot{m}_{\mathrm{in,}i} '
r'\cdot x_{fuel\mathrm{,in,}i} - \dot{m}_\mathrm{out,3} '
r'\cdot x_{fuel\mathrm{,out,3}} \right)\\' + '\n'
r'& + \dot{Q}_1 + \dot{Q}_2+P + \dot{Q}_\mathrm{loss}\\' + '\n'
r'& \forall i \in [3,4]\\'
r'& T_\mathrm{ref}=\unit[298.15]{K}'
r'\;p_\mathrm{ref}=\unit[10^5]{Pa}\\'
'\n' + r'\end{split}'
)
return generate_latex_eq(self, latex, label)
[docs]
def energy_balance_deriv(self, increment_filter, k):
"""
Calculate partial derivatives of energy balance function.
Parameters
----------
increment_filter : ndarray
Matrix for filtering non-changing variables.
k : int
Position of equation in Jacobian matrix.
"""
f = self.energy_balance_func
# mass flow cooling water
for i, o in zip(self.inl[:2], self.outl[:2]):
if i.m.is_var:
self.jacobian[k, i.m.J_col] = -(o.h.val_SI - i.h.val_SI)
# mass flow and pressure for combustion reaction
inl, outl = self._get_combustion_connections()
for c in inl + outl:
if self.is_variable(c.m, increment_filter):
self.jacobian[k, c.m.J_col] = self.numeric_deriv(f, 'm', c)
if self.is_variable(c.p, increment_filter):
self.jacobian[k, c.p.J_col] = self.numeric_deriv(f, 'p', c)
# enthalpy all connections
for i in self.inl:
if i.h.is_var:
self.jacobian[k, i.h.J_col] = i.m.val_SI
for o in self.outl:
if o.h.is_var:
self.jacobian[k, o.h.J_col] = -o.m.val_SI
# fluid composition
for c in inl:
for fl in (self.fuel_list & c.fluid.is_var):
self.jacobian[k, c.fluid.J_col[fl]] = c.m.val_SI * self.fuels[fl]['LHV']
c = outl[0]
for fl in (self.fuel_list & c.fluid.is_var):
self.jacobian[k, c.fluid.J_col[fl]] = -c.m.val_SI * self.fuels[fl]['LHV']
# power and heat loss
if self.P.is_var:
self.jacobian[k, self.P.J_col] = 1
if self.Qloss.is_var:
self.jacobian[k, self.Qloss.J_col] = 1
[docs]
def Q1_func(self):
r"""
Calculate residual value of primary heat loop function.
Returns
-------
residual : float
Residual value of equation.
.. math::
0 = \dot{m}_1 \cdot \left(h_{out,1} +
h_{in,1} \right) + \dot{Q}_1
"""
i = self.inl[0]
o = self.outl[0]
return i.m.val_SI * (o.h.val_SI - i.h.val_SI) + self.Q1.val
[docs]
def Q1_func_doc(self, label):
r"""
Calculate residual value of primary heat loop function.
Parameters
----------
label : str
Label for equation.
Returns
-------
latex : str
LaTeX code of equations applied.
"""
latex = (
r'0 = \dot{m}_\mathrm{in,1} \cdot \left(h_\mathrm{out,1} +'
r'h_\mathrm{in,1} \right) + \dot{Q}_1')
return generate_latex_eq(self, latex, label)
[docs]
def Q1_deriv(self, increment_filter, k):
"""
Calculate partial derivatives of primary heat loop function.
Parameters
----------
increment_filter : ndarray
Matrix for filtering non-changing variables.
k : int
Position of equation in Jacobian matrix.
"""
i = self.inl[0]
o = self.outl[0]
if self.is_variable(i.m, increment_filter):
self.jacobian[k, i.m.J_col] = o.h.val_SI - i.h.val_SI
if self.is_variable(i.h, increment_filter):
self.jacobian[k, i.h.J_col] = -i.m.val_SI
if self.is_variable(o.h, increment_filter):
self.jacobian[k, o.h.J_col] = i.m.val_SI
[docs]
def Q2_func(self):
r"""
Calculate residual value of secondary heat loop function.
Returns
-------
residual : float
Residual value of equation.
.. math::
0 = \dot{m}_2 \cdot \left(h_{out,2} - h_{in,2} \right) +
\dot{Q}_2
"""
i = self.inl[1]
o = self.outl[1]
return i.m.val_SI * (o.h.val_SI - i.h.val_SI) + self.Q2.val
[docs]
def Q2_func_doc(self, label):
r"""
Calculate residual value of secondary heat loop function.
Parameters
----------
label : str
Label for equation.
Returns
-------
latex : str
LaTeX code of equations applied.
"""
latex = (
r'0 = \dot{m}_\mathrm{in,2} \cdot \left(h_\mathrm{out,2} +'
r'h_\mathrm{in,2} \right) + \dot{Q}_2')
return generate_latex_eq(self, latex, label)
[docs]
def Q2_deriv(self, increment_filter, k):
"""
Calculate partial derivatives of secondary heat loop function.
Parameters
----------
increment_filter : ndarray
Matrix for filtering non-changing variables.
k : int
Position of equation in Jacobian matrix.
"""
i = self.inl[1]
o = self.outl[1]
if self.is_variable(i.m, increment_filter):
self.jacobian[k, i.m.J_col] = o.h.val_SI - i.h.val_SI
if self.is_variable(i.h, increment_filter):
self.jacobian[k, i.h.J_col] = -i.m.val_SI
if self.is_variable(o.h, increment_filter):
self.jacobian[k, o.h.J_col] = i.m.val_SI
[docs]
def tiP_char_func(self):
r"""
Calculate the relation of output power and thermal input.
Returns
-------
residual : float
Residual value of equation.
.. math::
0 = P \cdot f_{TI}\left(\frac{P}{P_{design}}\right)+ LHV \cdot
\left[\sum_i \left(\dot{m}_{in,i} \cdot
x_{f,i}\right) - \dot{m}_{out,3} \cdot x_{f,3} \right]
\; \forall i \in [3,4]
"""
if np.isnan(self.P.design):
expr = 1
else:
expr = self.P.val / self.P.design
return (
self.calc_ti()
+ self.tiP_char.char_func.evaluate(expr) * self.P.val
)
[docs]
def tiP_char_func_doc(self, label):
r"""
Calculate the relation of output power and thermal input.
Parameters
----------
label : str
Label for equation.
Returns
-------
latex : str
LaTeX code of equations applied.
"""
latex = (
r'\begin{split}' + '\n'
r'0=&P\cdot f_\mathrm{TI}\left(\frac{P}{P_\mathrm{design}}'
r'\right)\\ ' + '\n'
r'&+ LHV_{fuel} \cdot \left[\sum_i \left('
r'\dot{m}_{\mathrm{in,}i} \cdot x_{fuel\mathrm{,in,}i}\right)'
r'-\dot{m}_\mathrm{out,3}\cdot x_{fuel\mathrm{,out,}3}'
r'\right]\\' + '\n'
r'&\forall i \in [3,4]\\ ' + '\n'
r'\end{split}'
)
return generate_latex_eq(self, latex, label)
[docs]
def tiP_char_deriv(self, increment_filter, k):
"""
Calculate partial derivatives of power to thermal input characteristic.
Parameters
----------
increment_filter : ndarray
Matrix for filtering non-changing variables.
k : int
Position of equation in Jacobian matrix.
"""
inl, outl = self._get_combustion_connections()
f = self.tiP_char_func
for c in inl + outl:
if self.is_variable(c.m, increment_filter):
self.jacobian[k, c.m.J_col] = self.numeric_deriv(f, 'm', c)
for fl in (self.fuel_list & c.fluid.is_var):
self.jacobian[k, c.fluid.J_col[fl]] = self.numeric_deriv(f, fl, c)
if self.P.is_var:
self.jacobian[k, self.P.J_col] = self.numeric_deriv(f, 'P', None)
[docs]
def Q1_char_func(self):
r"""
Calculate the relation of heat output 1 and thermal input.
Returns
-------
residual : float
Residual value of equation.
.. math::
\begin{split}
0 = & \dot{m}_1 \cdot \left(h_{out,1} - h_{in,1} \right) \cdot
f_{TI}\left(\frac{P}{P_{design}}\right) \\
& - LHV \cdot \left[\sum_i
\left(\dot{m}_{in,i} \cdot x_{f,i}\right) -
\dot{m}_{out,3} \cdot x_{f,3} \right] \cdot
f_{Q1}\left(\frac{P}{P_{ref}}\right)\\
\end{split}\\
\forall i \in [3,4]
"""
i = self.inl[0]
o = self.outl[0]
if np.isnan(self.P.design):
expr = 1
else:
expr = self.P.val / self.P.design
return (self.calc_ti() * self.Q1_char.char_func.evaluate(expr) -
self.tiP_char.char_func.evaluate(expr) * i.m.val_SI *
(o.h.val_SI - i.h.val_SI))
[docs]
def Q1_char_func_doc(self, label):
r"""
Calculate the relation of heat output 1 and thermal input.
Parameters
----------
label : str
Label for equation.
Returns
-------
latex : str
LaTeX code of equations applied.
"""
latex = (
r'\begin{split}' + '\n'
r'0=&LHV_{fuel} \cdot \left[\sum_i \left('
r'\dot{m}_{\mathrm{in,}i} \cdot x_{fuel\mathrm{,in,}i}\right)'
r'-\dot{m}_\mathrm{out,3}\cdot x_{fuel\mathrm{,out,}3}'
r'\right] \cdot f_\mathrm{Q1}\left(\frac{P}{P_\mathrm{design}}'
r'\right)\\' + '\n'
r'&-\dot{m}_\mathrm{in,1} \cdot \left( h_\mathrm{out,1} - '
r'h_\mathrm{in,1}\right) \cdot f_\mathrm{TI}'
r'\left(\frac{P}{P_\mathrm{design}}'
r'\right)\\ ' + '\n'
r'&\forall i \in [3,4]\\ ' + '\n'
r'\end{split}'
)
return generate_latex_eq(self, latex, label)
[docs]
def Q1_char_deriv(self, increment_filter, k):
"""
Calculate partial derivatives of primary heat to thermal input char.
Parameters
----------
increment_filter : ndarray
Matrix for filtering non-changing variables.
k : int
Position of equation in Jacobian matrix.
"""
f = self.Q1_char_func
i = self.inl[0]
if self.is_variable(i.m, increment_filter):
self.jacobian[k, i.m.J_col] = self.numeric_deriv(f, 'm', i)
if self.is_variable(i.h, increment_filter):
self.jacobian[k, i.h.J_col] = self.numeric_deriv(f, 'h', i)
o = self.outl[0]
if self.is_variable(o.h, increment_filter):
self.jacobian[k, o.h.J_col] = self.numeric_deriv(f, 'h', o)
inl, outl = self._get_combustion_connections()
for c in inl + outl:
if self.is_variable(c.m, increment_filter):
self.jacobian[k, c.m.J_col] = self.numeric_deriv(f, 'm', c)
for fl in (self.fuel_list & c.fluid.is_var):
self.jacobian[k, c.fluid.J_col[fl]] = self.numeric_deriv(f, fl, c)
if self.P.is_var:
self.jacobian[k, self.P.J_col] = self.numeric_deriv(f, 'P', None)
[docs]
def Q2_char_func(self):
r"""
Calculate the relation of heat output 2 and thermal input.
Returns
-------
residual : float
Residual value of equation.
.. math::
\begin{split}
0 = & \dot{m}_2 \cdot \left(h_{out,2} - h_{in,2} \right) \cdot
f_{TI}\left(\frac{P}{P_{design}}\right) \\
& - LHV \cdot \left[\sum_i
\left(\dot{m}_{in,i} \cdot x_{f,i}\right) -
\dot{m}_{out,3} \cdot x_{f,3} \right] \cdot
f_{Q2}\left(\frac{P}{P_{ref}}\right)\\
\end{split}\\
\forall i \in [3,4]
"""
i = self.inl[1]
o = self.outl[1]
if np.isnan(self.P.design):
expr = 1
else:
expr = self.P.val / self.P.design
return (
self.calc_ti() * self.Q2_char.char_func.evaluate(expr)
- self.tiP_char.char_func.evaluate(expr) * i.m.val_SI
* (o.h.val_SI - i.h.val_SI)
)
[docs]
def Q2_char_func_doc(self, label):
r"""
Calculate the relation of heat output 2 and thermal input.
Parameters
----------
label : str
Label for equation.
Returns
-------
latex : str
LaTeX code of equations applied.
"""
latex = (
r'\begin{split}' + '\n'
r'0=&LHV_{fuel} \cdot \left[\sum_i \left('
r'\dot{m}_{\mathrm{in,}i} \cdot x_{fuel\mathrm{,in,}i}\right)'
r'-\dot{m}_\mathrm{out,3}\cdot x_{fuel\mathrm{,out,}3}'
r'\right] \cdot f_\mathrm{Q2}\left(\frac{P}{P_\mathrm{design}}'
r'\right)\\' + '\n'
r'&-\dot{m}_\mathrm{in,2} \cdot \left( h_\mathrm{out,2} - '
r'h_\mathrm{in,2}\right) \cdot f_\mathrm{TI}'
r'\left(\frac{P}{P_\mathrm{design}}'
r'\right)\\ ' + '\n'
r'&\forall i \in [3,4]\\ ' + '\n'
r'\end{split}'
)
return generate_latex_eq(self, latex, label)
[docs]
def Q2_char_deriv(self, increment_filter, k):
"""
Calculate partial derivatives of secondary heat to thermal input char.
Parameters
----------
increment_filter : ndarray
Matrix for filtering non-changing variables.
k : int
Position of equation in Jacobian matrix.
"""
f = self.Q2_char_func
i = self.inl[1]
if self.is_variable(i.m, increment_filter):
self.jacobian[k, i.m.J_col] = self.numeric_deriv(f, 'm', i)
if self.is_variable(i.h, increment_filter):
self.jacobian[k, i.h.J_col] = self.numeric_deriv(f, 'h', i)
o = self.outl[1]
if self.is_variable(o.h, increment_filter):
self.jacobian[k, o.h.J_col] = self.numeric_deriv(f, 'h', o)
inl, outl = self._get_combustion_connections()
for c in inl + outl:
if self.is_variable(c.m, increment_filter):
self.jacobian[k, c.m.J_col] = self.numeric_deriv(f, 'm', c)
for fl in (self.fuel_list & c.fluid.is_var):
self.jacobian[k, c.fluid.J_col[fl]] = self.numeric_deriv(f, fl, c)
if self.P.is_var:
self.jacobian[k, self.P.J_col] = self.numeric_deriv(f, 'P', None)
[docs]
def Qloss_char_func(self):
r"""
Calculate the relation of heat loss and thermal input.
Returns
-------
residual : float
Residual value of equation.
.. math::
\begin{split}
0 = & \dot{Q}_{loss} \cdot
f_{TI}\left(\frac{P}{P_{design}}\right) \\
& + LHV \cdot \left[\sum_i
\left(\dot{m}_{in,i} \cdot x_{f,i}\right) -
\dot{m}_{out,3} \cdot x_{f,3} \right] \cdot
f_{QLOSS}\left(\frac{P}{P_{ref}}\right)\\
\end{split}\\
\forall i \in [3,4]
"""
if np.isnan(self.P.design):
expr = 1
else:
expr = self.P.val / self.P.design
return (self.calc_ti() * self.Qloss_char.char_func.evaluate(expr) +
self.tiP_char.char_func.evaluate(expr) * self.Qloss.val)
[docs]
def Qloss_char_func_doc(self, label):
r"""
Calculate the relation of heat loss and thermal input.
Parameters
----------
label : str
Label for equation.
"""
latex = (
r'\begin{split}' + '\n'
r'0=&LHV_{fuel} \cdot \left[\sum_i \left('
r'\dot{m}_{\mathrm{in,}i} \cdot x_{fuel\mathrm{,in,}i}\right)'
r'-\dot{m}_\mathrm{out,3}\cdot x_{fuel\mathrm{,out,}3}\right]'
r' \cdot f_\mathrm{QLOSS}\left(\frac{P}{P_\mathrm{design}}'
r'\right)\\' + '\n'
r'&+\dot{Q}_\mathrm{loss} \cdot f_\mathrm{TI}'
r'\left(\frac{P}{P_\mathrm{design}}'
r'\right)\\ ' + '\n'
r'&\forall i \in [3,4]\\ ' + '\n'
r'\end{split}'
)
return generate_latex_eq(self, latex, label)
[docs]
def Qloss_char_deriv(self, increment_filter, k):
"""
Calculate partial derivatives of heat loss to thermal input char.
Parameters
----------
increment_filter : ndarray
Matrix for filtering non-changing variables.
k : int
Position of equation in Jacobian matrix.
"""
f = self.Qloss_char_func
inl, outl = self._get_combustion_connections()
for c in inl + outl:
if self.is_variable(c.m, increment_filter):
self.jacobian[k, c.m.J_col] = self.numeric_deriv(f, 'm', c)
for fl in (self.fuel_list & c.fluid.is_var):
self.jacobian[k, c.fluid.J_col[fl]] = self.numeric_deriv(f, fl, c)
if self.P.is_var:
self.jacobian[k, self.P.J_col] = self.numeric_deriv(f, 'P', None)
if self.Qloss.is_var:
self.jacobian[k, self.Qloss.J_col] = self.numeric_deriv(f, 'Qloss', None)
[docs]
def calc_P(self):
r"""
Calculate the power output of the combustion engine.
Returns
-------
P : float
Power output.
.. math::
P = -\frac{LHV \cdot \dot{m}_{f}}
{f_{TI}\left(\frac{P}{P_{ref}}\right)}
"""
if np.isnan(self.P.design):
expr = 1
else:
expr = self.P.val / self.P.design
return -self.calc_ti() / self.tiP_char.char_func.evaluate(expr)
[docs]
def calc_Qloss(self):
r"""
Calculate the heat loss of the combustion engine.
Returns
-------
Qloss : float
Heat loss.
.. math::
\dot{Q}_{loss} = -\frac{LHV \cdot \dot{m}_{f} \cdot
f_{QLOSS}\left(\frac{P}{P_{ref}}\right)}
{f_{TI}\left(\frac{P}{P_{ref}}\right)}
"""
if np.isnan(self.P.design):
expr = 1
else:
expr = self.P.val / self.P.design
return (-self.calc_ti() * self.Qloss_char.char_func.evaluate(expr) /
self.tiP_char.char_func.evaluate(expr))
[docs]
def bus_func(self, bus):
r"""
Calculate the value of the bus function.
Parameters
----------
bus : tespy.connections.bus.Bus
TESPy bus object.
Returns
-------
residual : float
Value of energy transfer :math:`\dot{E}`. This value is passed to
:py:meth:`tespy.components.component.Component.calc_bus_value`
for value manipulation according to the specified characteristic
line of the bus.
.. math::
\dot{E} = \begin{cases}
LHV \cdot \dot{m}_{f} & \text{key = 'TI'}\\
P & \text{key = 'P'}\\
-\dot{m}_1 \cdot \left( h_{1,out} - h_{1,in} \right)
-\dot{m}_2 \cdot \left( h_{2,out} - h_{2,in} \right) &
\text{key = 'Q'}\\
-\dot{m}_1 \cdot \left( h_{1,out} - h_{1,in} \right) &
\text{key = 'Q1'}\\
-\dot{m}_2 \cdot \left( h_{2,out} - h_{2,in} \right) &
\text{key = 'Q2'}\\
\dot{Q}_{loss} & \text{key = 'Qloss'}
\end{cases}
"""
######################################################################
# value for bus parameter of thermal input (TI)
if bus['param'] == 'TI':
val = self.calc_ti()
######################################################################
# value for bus parameter of power output (P)
elif bus['param'] == 'P':
val = self.calc_P()
######################################################################
# value for bus parameter of total heat production (Q)
elif bus['param'] == 'Q':
val = 0
for j in range(2):
i = self.inl[j]
o = self.outl[j]
val -= i.m.val_SI * (o.h.val_SI - i.h.val_SI)
######################################################################
# value for bus parameter of heat production 1 (Q1)
elif bus['param'] == 'Q1':
i = self.inl[0]
o = self.outl[0]
val = -i.m.val_SI * (o.h.val_SI - i.h.val_SI)
######################################################################
# value for bus parameter of heat production 2 (Q2)
elif bus['param'] == 'Q2':
i = self.inl[1]
o = self.outl[1]
val = -i.m.val_SI * (o.h.val_SI - i.h.val_SI)
######################################################################
# value for bus parameter of heat loss (Qloss)
elif bus['param'] == 'Qloss':
val = self.calc_Qloss()
######################################################################
# missing/invalid bus parameter
else:
msg = ('The parameter ' + str(bus['param']) +
' is not a valid parameter for a ' + self.component() + '.')
logger.error(msg)
raise ValueError(msg)
return val
[docs]
def bus_func_doc(self, bus):
r"""
Return LaTeX string of the bus function.
Parameters
----------
bus : tespy.connections.bus.Bus
TESPy bus object.
Returns
-------
latex : str
LaTeX string of bus function.
"""
######################################################################
# value for bus parameter of thermal input (TI)
if bus['param'] == 'TI':
return CombustionChamber.bus_func_doc(self, bus)
######################################################################
# value for bus parameter of power output (P)
elif bus['param'] == 'P':
return 'P'
######################################################################
# value for bus parameter of total heat production (Q)
elif bus['param'] == 'Q':
return (
r'-\dot{m}_\mathrm{in,1} \cdot \left( h_\mathrm{out,1} -'
r'h_\mathrm{in,1} \right) - \dot{m}_\mathrm{in,2} \cdot '
r'\left( h_\mathrm{out,2} - h_\mathrm{in,2} \right)')
######################################################################
# value for bus parameter of heat production 1 (Q1)
elif bus['param'] == 'Q1':
return (
r'-\dot{m}_\mathrm{in,1} \cdot \left( h_\mathrm{out,1} -'
r'h_\mathrm{in,1} \right)')
######################################################################
# value for bus parameter of heat production 2 (Q2)
elif bus['param'] == 'Q2':
return (
r'- \dot{m}_\mathrm{in,2} \cdot '
r'\left( h_\mathrm{out,2} - h_\mathrm{in,2} \right)')
######################################################################
# value for bus parameter of heat loss (Qloss)
elif bus['param'] == 'Qloss':
return r'\dot{Q}_\mathrm{loss}'
[docs]
def bus_deriv(self, bus):
r"""
Calculate the matrix of partial derivatives of the bus function.
Parameters
----------
bus : tespy.connections.bus.Bus
TESPy bus object.
Returns
-------
deriv : ndarray
Matrix of partial derivatives.
"""
inl, outl = self._get_combustion_connections()
f = self.calc_bus_value
b = bus.comps.loc[self]
######################################################################
# derivatives for bus parameter of thermal input (TI)
if b['param'] == 'TI':
for c in inl + outl:
if c.m.is_var:
if c.m.J_col not in bus.jacobian:
bus.jacobian[c.m.J_col] = 0
bus.jacobian[c.m.J_col] -= self.numeric_deriv(f, 'm', c, bus=bus)
for fluid in c.fluid.is_var:
if c.fluid.J_col[fluid] not in bus.jacobian:
bus.jacobian[c.fluid.J_col[fluid]] = 0
bus.jacobian[c.fluid.J_col[fluid]] -= self.numeric_deriv(f, fluid, c, bus=bus)
######################################################################
# derivatives for bus parameter of power production (P) or
# heat loss (Qloss)
elif b['param'] == 'P' or b['param'] == 'Qloss':
for c in inl + outl:
if c.m.is_var:
if c.m.J_col not in bus.jacobian:
bus.jacobian[c.m.J_col] = 0
bus.jacobian[c.m.J_col] -= self.numeric_deriv(f, 'm', c, bus=bus)
for fluid in c.fluid.is_var:
if c.fluid.J_col[fluid] not in bus.jacobian:
bus.jacobian[c.fluid.J_col[fluid]] = 0
bus.jacobian[c.fluid.J_col[fluid]] -= self.numeric_deriv(f, fluid, c, bus=bus)
# variable power
if self.P.is_var:
if self.P.J_col not in bus.jacobian:
bus.jacobian[self.P.J_col] = 0
bus.jacobian[self.P.J_col] -= self.numeric_deriv(f, 'P', None, bus=bus)
######################################################################
# derivatives for bus parameter of total heat production (Q)
elif b['param'] == 'Q':
for i, o in zip(self.inl[:2], self.outl[:2]):
if i.m.is_var:
if i.m.J_col not in bus.jacobian:
bus.jacobian[i.m.J_col] = 0
bus.jacobian[i.m.J_col] -= self.numeric_deriv(f, 'm', i, bus=bus)
if i.h.is_var:
if i.h.J_col not in bus.jacobian:
bus.jacobian[i.h.J_col] = 0
bus.jacobian[i.h.J_col] -= self.numeric_deriv(f, 'h', i, bus=bus)
if o.h.is_var:
if o.h.J_col not in bus.jacobian:
bus.jacobian[o.h.J_col] = 0
bus.jacobian[o.h.J_col] -= self.numeric_deriv(f, 'h', o, bus=bus)
######################################################################
# derivatives for bus parameter of heat production 1 and 2 (Q1, Q2)
elif b['param'] in ['Q1', 'Q2']:
i = self.inl[int(b["param"][-1]) - 1]
o = self.outl[int(b["param"][-1]) - 1]
if i.m.is_var:
if i.m.J_col not in bus.jacobian:
bus.jacobian[i.m.J_col] = 0
bus.jacobian[i.m.J_col] -= self.numeric_deriv(f, 'm', i, bus=bus)
if i.h.is_var:
if i.h.J_col not in bus.jacobian:
bus.jacobian[i.h.J_col] = 0
bus.jacobian[i.h.J_col] -= self.numeric_deriv(f, 'h', i, bus=bus)
if o.h.is_var:
if o.h.J_col not in bus.jacobian:
bus.jacobian[o.h.J_col] = 0
bus.jacobian[o.h.J_col] -= self.numeric_deriv(f, 'h', o, bus=bus)
######################################################################
# missing/invalid bus parameter
else:
msg = ('The parameter ' + str(b['param']) +
' is not a valid parameter for a ' + self.component() + '.')
logger.error(msg)
raise ValueError(msg)
[docs]
@staticmethod
def initialise_source(c, key):
r"""
Return a starting value for pressure and enthalpy at outlet.
Parameters
----------
c : tespy.connections.connection.Connection
Connection to perform initialisation on.
key : str
Fluid property to retrieve.
Returns
-------
val : float
Starting value for pressure/enthalpy in SI units.
.. math::
val = \begin{cases}
5 \cdot 10^5 & \text{key = 'p'}\\
10^6 & \text{key = 'h'}
\end{cases}
"""
if key == 'p':
return 5e5
elif key == 'h':
return 10e5
[docs]
@staticmethod
def initialise_target(c, key):
r"""
Return a starting value for pressure and enthalpy at inlet.
Parameters
----------
c : tespy.connections.connection.Connection
Connection to perform initialisation on.
key : str
Fluid property to retrieve.
Returns
-------
val : float
Starting value for pressure/enthalpy in SI units.
.. math::
val = \begin{cases}
5 \cdot 10^5 & \text{key = 'p'}\\
5 \cdot 10^5 & \text{key = 'h'}
\end{cases}
"""
if key == 'p':
return 5e5
elif key == 'h':
return 5e5
[docs]
def calc_parameters(self):
r"""Postprocessing parameter calculation."""
# Q, pr and zeta
for i in range(2):
self.get_attr('Q' + str(i + 1)).val = -self.inl[i].m.val_SI * (
self.outl[i].h.val_SI - self.inl[i].h.val_SI)
self.get_attr('pr' + str(i + 1)).val = (
self.outl[i].p.val_SI / self.inl[i].p.val_SI)
self.get_attr('zeta' + str(i + 1)).val = self.calc_zeta(
self.inl[i], self.outl[i]
)
self.P.val = self.calc_P()
self.Qloss.val = self.calc_Qloss()
super().calc_parameters()
[docs]
def check_parameter_bounds(self):
r"""Check parameter value limits."""
super().check_parameter_bounds()
# get bound errors for characteristic lines
if np.isnan(self.P.design):
expr = 1
else:
expr = self.P.val / self.P.design
self.tiP_char.char_func.get_domain_errors(expr, self.label)
self.Qloss_char.char_func.get_domain_errors(expr, self.label)
self.Q1_char.char_func.get_domain_errors(expr, self.label)
self.Q2_char.char_func.get_domain_errors(expr, self.label)
[docs]
def entropy_balance(self):
r"""
Calculate entropy balance of combustion engine.
For the entropy balance of a combustion engine two additional
parameters need to be specified:
- virtual inner temperature :code:`T_v_inner` that is used to determine
the entropy of heat transferred from the hot side.
- mechanical efficiency :code:`eta_mech` describing the ratio of power
output :code:`P` to reversible power of the motor
:cite:`Zahoransky2019`. It is used to determine the irreversibilty
inside the motor.
.. math::
P_\mathrm{irr,inner}=\left(1 - \frac{1}{\eta_\mathrm{mech}}
\right) \cdot P
The default values are:
- :code:`T_v_inner`: flue gas temperature (result of calculation)
- :code:`eta_mech`: 0.85
Note
----
The entropy balance makes the following parameter available:
- :code:`T_mcomb`: Thermodynamic temperature of heat of combustion
- :code:`S_comb`: Entropy production due to combustion
- :code:`T_mQ1`: Thermodynamic temperature of heat at cold side of
heater 1
- :code:`S_Q11`: Entropy transport at hot side of heater 1
- :code:`S_Q12`: Entropy transport at cold side of heater 1
- :code:`S_Q1irr`: Entropy production due to heat transfer at heater 1
- :code:`S_irr1`: Entropy production due to pressure losses at heater 1
- :code:`T_mQ2`: Thermodynamic temperature of heat at cold side of
heater 2
- :code:`S_Q21`: Entropy transport at hot side of heater 2
- :code:`S_Q22`: Entropy transport at cold side of heater 2
- :code:`S_Q2irr`: Entropy production due to heat transfer at heater 2
- :code:`S_irr2`: Entropy production due to pressure losses at heater 2
- :code:`S_irr_i`: Entropy production due to internal irreversibilty
- :code:`S_Qloss`: Entropy transport with heat loss to ambient
- :code:`S_Qcomb`: Virtual entropy transport of heat to revert
combustion gases to reference state
- :code:`S_irr`: Total entropy production due to irreversibilty
The methodology for entropy analysis of combustion processes is derived
from :cite:`Tuschy2001`. Similar to the energy balance of a combustion
reaction, we need to define the same reference state for the entropy
balance of the combustion. The temperature for the reference state is
set to 25 °C and reference pressure is 1 bar. As the water in the flue
gas may be liquid but the thermodynmic temperature of heat of
combustion refers to the lower heating value, the water is forced to
gas at the reference point by considering evaporation.
- Reference temperature: 298.15 K.
- Reference pressure: 1 bar.
.. math::
\begin{split}
T_\mathrm{m,comb}= & \frac{\dot{m}_\mathrm{fuel} \cdot LHV}
{\dot{S}_\mathrm{comb}}\\
\dot{S}_\mathrm{comb} =&\dot{S}_\mathrm{Q,comb}-\left(
\dot{S}_\mathrm{Q,11} + \dot{S}_\mathrm{Q,21} +
\dot{S}_\mathrm{Q,loss} +\dot{S}_\mathrm{irr,i}\right)\\
\dot{S}_\mathrm{Q,comb}= & \dot{m}_\mathrm{fluegas} \cdot
\left(s_\mathrm{fluegas}-s_\mathrm{fluegas,ref}\right)\\
& - \sum_{i=3}^4 \dot{m}_{\mathrm{in,}i} \cdot
\left( s_{\mathrm{in,}i} - s_{\mathrm{in,ref,}i} \right)\\
\dot{S}_\mathrm{Q,11}= & \frac{\dot{Q}_1}{T_\mathrm{v,inner}}\\
\dot{S}_\mathrm{Q,21}= & \frac{\dot{Q}_2}{T_\mathrm{v,inner}}\\
\dot{S}_\mathrm{Q,loss}= & \frac{\dot{Q}_\mathrm{loss}}
{T_\mathrm{v,inner}}\\
\dot{S}_\mathrm{irr,i}= & \frac{\left(1 -
\frac{1}{\eta_\mathrm{mech}}\right) \cdot P}{T_\mathrm{v,inner}}\\
T_\mathrm{Q,12} = &\frac{-\dot{Q}_1}{\dot{m}_1 \cdot \left(
s_\mathrm{out,1} - s_\mathrm{in,1}\right)}\\
T_\mathrm{Q,22} = &\frac{-\dot{Q}_2}{\dot{m}_2 \cdot \left(
s_\mathrm{out,2} - s_\mathrm{in,2}\right)}\\
\dot{S}_\mathrm{irr} = &\sum \dot{S}_\mathrm{irr}\\
\end{split}\\
"""
T_ref = 298.15
p_ref = 1e5
o = self.outl[2]
self.S_Qcomb = o.m.val_SI * (
o.s.val_SI - s_mix_pT(p_ref, T_ref, o.fluid_data, "forced-gas")
)
for i in self.inl[2:]:
self.S_Qcomb -= i.m.val_SI * (
i.s.val_SI - s_mix_pT(p_ref, T_ref, i.fluid_data, "forced-gas")
)
# (virtual) thermodynamic temperature of combustion, use default value
# if not specified
if not self.T_v_inner.is_set:
self.T_v_inner.val = o.T.val_SI
for i in range(2):
inl = self.inl[i]
out = self.outl[i]
p_star = inl.p.val_SI * (
self.get_attr('pr' + str(i + 1)).val) ** 0.5
s_i_star = s_mix_ph(
p_star, inl.h.val_SI, inl.fluid_data, inl.mixing_rule,
T0=inl.T.val_SI
)
s_o_star = s_mix_ph(
p_star, out.h.val_SI, out.fluid_data, out.mixing_rule,
T0=out.T.val_SI
)
setattr(
self, 'S_Q' + str(i + 1) + '2',
inl.m.val_SI * (s_o_star - s_i_star)
)
S_Q = self.get_attr('S_Q' + str(i + 1) + '2')
setattr(
self, 'S_irr' + str(i + 1),
inl.m.val_SI * (out.s.val_SI - inl.s.val_SI) - S_Q
)
setattr(
self, 'T_mQ' + str(i + 1),
inl.m.val_SI * (out.h.val_SI - inl.h.val_SI) / S_Q
)
# internal irreversibilty
self.P_irr_i = (1 / self.eta_mech.val - 1) * self.P.val
# internal entropy flow and production
self.S_Q11 = self.Q1.val / self.T_v_inner.val
self.S_Q21 = self.Q2.val / self.T_v_inner.val
self.S_Qloss = self.Qloss.val / self.T_v_inner.val
self.S_irr_i = self.P_irr_i / self.T_v_inner.val
# entropy production of heaters due to heat transfer
self.S_Q1irr = self.S_Q12 - self.S_Q11
self.S_Q2irr = self.S_Q22 - self.S_Q21
# calculate entropy production of combustion
self.S_comb = (
self.S_Qcomb - self.S_Q11 - self.S_Q21 - self.S_Qloss
- self.S_irr_i
)
# thermodynamic temperature of heat input
self.T_mcomb = self.calc_ti() / self.S_comb
# total irreversibilty production
self.S_irr = (
self.S_irr_i + self.S_irr2 + self.S_irr1
+ self.S_Q1irr + self.S_Q2irr
)
[docs]
def exergy_balance(self, T0):
self.E_P = (
self.outl[2].Ex_physical - (self.inl[3].Ex_physical + self.inl[2].Ex_physical)
- self.P.val + (self.outl[1] - self.inl[1]) + (self.outl[0] - self.inl[0])
)
self.E_F = (
self.inl[3].Ex_chemical + self.inl[2].Ex_chemical
- self.outl[2].Ex_chemical
)
self.E_D = self.E_F - self.E_P
self.epsilon = self._calc_epsilon()
self.E_bus = {
"chemical": np.nan, "physical": np.nan, "massless": -self.P.val
}