Source code for tespy.components.heat_exchangers.simple

# -*- coding: utf-8

"""Module of class SimpleHeatExchanger.


This file is part of project TESPy (github.com/oemof/tespy). It's copyrighted
by the contributors recorded in the version control history of the file,
available from its original location
tespy/components/heat_exchangers/simple.py

SPDX-License-Identifier: MIT
"""

import math
import warnings

import numpy as np

from tespy.components.component import Component
from tespy.components.component import component_registry
from tespy.tools import logger
from tespy.tools.data_containers import ComponentCharacteristics as dc_cc
from tespy.tools.data_containers import ComponentProperties as dc_cp
from tespy.tools.data_containers import GroupedComponentProperties as dc_gcp
from tespy.tools.data_containers import SimpleDataContainer as dc_simple
from tespy.tools.document_models import generate_latex_eq
from tespy.tools.fluid_properties import s_mix_ph
from tespy.tools.fluid_properties.helpers import darcy_friction_factor as dff
from tespy.tools.helpers import convert_to_SI


[docs] @component_registry class SimpleHeatExchanger(Component): r""" A basic heat exchanger representing a heat source or heat sink. The component SimpleHeatExchanger is the parent class for the components: - :py:class:`tespy.components.heat_exchangers.solar_collector.SolarCollector` - :py:class:`tespy.components.heat_exchangers.parabolic_trough.ParabolicTrough` - :py:class:`tespy.components.piping.pipe.Pipe` **Mandatory Equations** - :py:meth:`tespy.components.component.Component.fluid_func` - :py:meth:`tespy.components.component.Component.mass_flow_func` **Optional Equations** - :py:meth:`tespy.components.component.Component.pr_func` - :py:meth:`tespy.components.component.Component.zeta_func` - :py:meth:`tespy.components.heat_exchangers.simple.SimpleHeatExchanger.energy_balance_func` - :py:meth:`tespy.components.heat_exchangers.simple.SimpleHeatExchanger.darcy_group_func` - :py:meth:`tespy.components.heat_exchangers.simple.SimpleHeatExchanger.hw_group_func` - :py:meth:`tespy.components.heat_exchangers.simple.SimpleHeatExchanger.kA_group_func` - :py:meth:`tespy.components.heat_exchangers.simple.SimpleHeatExchanger.kA_char_group_func` Inlets/Outlets - in1 - out1 Image .. image:: /api/_images/Pipe.svg :alt: flowsheet of the simple heat exchanger :align: center :class: only-light .. image:: /api/_images/Pipe_darkmode.svg :alt: flowsheet of the simple heat exchanger :align: center :class: only-dark Parameters ---------- label : str The label of the component. design : list List containing design parameters (stated as String). offdesign : list List containing offdesign parameters (stated as String). design_path : str Path to the components design case. local_offdesign : boolean Treat this component in offdesign mode in a design calculation. local_design : boolean Treat this component in design mode in an offdesign calculation. char_warnings : boolean Ignore warnings on default characteristics usage for this component. printout : boolean Include this component in the network's results printout. Q : float, dict, :code:`"var"` Heat transfer, :math:`Q/\text{W}`. pr : float, dict, :code:`"var"` Outlet to inlet pressure ratio, :math:`pr/1`. zeta : float, dict, :code:`"var"` Geometry independent friction coefficient, :math:`\frac{\zeta}{D^4}/\frac{1}{\text{m}^4}`. D : float, dict, :code:`"var"` Diameter of the pipes, :math:`D/\text{m}`. L : float, dict, :code:`"var"` Length of the pipes, :math:`L/\text{m}`. ks : float, dict, :code:`"var"` Pipe's roughness, :math:`ks/\text{m}`. darcy_group : str, dict Parametergroup for pressure drop calculation based on pipes dimensions using darcy weissbach equation. ks_HW : float, dict, :code:`"var"` Pipe's roughness, :math:`ks/\text{1}`. hw_group : str, dict Parametergroup for pressure drop calculation based on pipes dimensions using hazen williams equation. kA : float, dict, :code:`"var"` Area independent heat transfer coefficient, :math:`kA/\frac{\text{W}}{\text{K}}`. kA_char : tespy.tools.characteristics.CharLine, dict Characteristic line for heat transfer coefficient. Tamb : float, dict Ambient temperature, provide parameter in network's temperature unit. kA_group : str, dict Parametergroup for heat transfer calculation from ambient temperature and area independent heat transfer coefficient kA. Example ------- The SimpleHeatExchanger can be used as a sink or source of heat. This component does not simulate the secondary side of the heat exchanger. It is possible to calculate the pressure ratio with the Darcy-Weisbach equation or in case of liquid water use the Hazen-Williams equation. Also, given ambient temperature and the heat transfer coeffiecient, it is possible to predict heat transfer. >>> from tespy.components import Sink, Source, SimpleHeatExchanger >>> from tespy.connections import Connection >>> from tespy.networks import Network >>> import shutil >>> nw = Network() >>> nw.set_attr(p_unit='bar', T_unit='C', h_unit='kJ / kg', iterinfo=False) >>> so1 = Source('source 1') >>> si1 = Sink('sink 1') >>> heat_sink = SimpleHeatExchanger('heat sink') >>> heat_sink.component() 'heat exchanger simple' >>> heat_sink.set_attr(Tamb=10, pr=0.95, design=['pr'], ... offdesign=['zeta', 'kA_char']) >>> inc = Connection(so1, 'out1', heat_sink, 'in1') >>> outg = Connection(heat_sink, 'out1', si1, 'in1') >>> nw.add_conns(inc, outg) It is possible to determine the amount of heat transferred when the fluid enters the heat sink at a temperature of 200 °C and is cooled down to 150 °C. Given an ambient temperature of 10 °C this also determines the heat transfer coefficient to the ambient. Assuming a characteristic function for the heat transfer coefficient we can predict the heat transferred at variable flow rates. >>> inc.set_attr(fluid={'N2': 1}, m=1, T=200, p=5) >>> outg.set_attr(T=150, design=['T']) >>> nw.solve('design') >>> nw.save('tmp') >>> round(heat_sink.Q.val, 0) -52581.0 >>> round(heat_sink.kA.val, 0) 321.0 >>> inc.set_attr(m=1.25) >>> nw.solve('offdesign', design_path='tmp') >>> round(heat_sink.Q.val, 0) -56599.0 >>> round(outg.T.val, 1) 156.9 >>> inc.set_attr(m=0.75) >>> nw.solve('offdesign', design_path='tmp') >>> round(heat_sink.Q.val, 1) -47275.8 >>> round(outg.T.val, 1) 140.0 >>> shutil.rmtree('./tmp', ignore_errors=True) """
[docs] @staticmethod def component(): return 'heat exchanger simple'
[docs] def get_parameters(self): return { 'Q': dc_cp( deriv=self.energy_balance_deriv, latex=self.energy_balance_func_doc, num_eq=1, func=self.energy_balance_func), 'pr': dc_cp( min_val=1e-4, max_val=1, num_eq=1, deriv=self.pr_deriv, latex=self.pr_func_doc, func=self.pr_func, func_params={'pr': 'pr'}), 'zeta': dc_cp( min_val=0, max_val=1e15, num_eq=1, deriv=self.zeta_deriv, func=self.zeta_func, latex=self.zeta_func_doc, func_params={'zeta': 'zeta'}), 'D': dc_cp(min_val=1e-2, max_val=2, d=1e-4), 'L': dc_cp(min_val=1e-1, d=1e-3), 'ks': dc_cp(val=1e-4, min_val=1e-7, max_val=1e-3, d=1e-8), 'ks_HW': dc_cp(val=10, min_val=1e-1, max_val=1e3, d=1e-2), 'kA': dc_cp(min_val=0, d=1), 'kA_char': dc_cc(param='m'), 'Tamb': dc_cp(), 'dissipative': dc_simple(val=None), 'darcy_group': dc_gcp( elements=['L', 'ks', 'D'], num_eq=1, latex=self.darcy_func_doc, func=self.darcy_func, deriv=self.darcy_deriv), 'hw_group': dc_gcp( elements=['L', 'ks_HW', 'D'], num_eq=1, latex=self.hazen_williams_func_doc, func=self.hazen_williams_func, deriv=self.hazen_williams_deriv), 'kA_group': dc_gcp( elements=['kA', 'Tamb'], num_eq=1, latex=self.kA_group_func_doc, func=self.kA_group_func, deriv=self.kA_group_deriv), 'kA_char_group': dc_gcp( elements=['kA_char', 'Tamb'], num_eq=1, latex=self.kA_char_group_func_doc, func=self.kA_char_group_func, deriv=self.kA_char_group_deriv) }
[docs] @staticmethod def inlets(): return ['in1']
[docs] @staticmethod def outlets(): return ['out1']
[docs] def preprocess(self, num_nw_vars): super().preprocess(num_nw_vars) self.Tamb.val_SI = convert_to_SI('T', self.Tamb.val, self.inl[0].T.unit)
[docs] def energy_balance_func(self): r""" Equation for pressure drop calculation. Returns ------- residual : float Residual value of equation: .. math:: 0 =\dot{m}_{in}\cdot\left( h_{out}-h_{in}\right) -\dot{Q} """ return self.inl[0].m.val_SI * ( self.outl[0].h.val_SI - self.inl[0].h.val_SI ) - self.Q.val
[docs] def energy_balance_func_doc(self, label): r""" Equation for pressure drop calculation. Parameters ---------- label : str Label for equation. Returns ------- latex : str LaTeX code of equations applied. """ latex = ( r'0 = \dot{m}_\mathrm{in} \cdot \left(h_\mathrm{out} - ' r'h_\mathrm{in} \right) -\dot{Q}' ) return generate_latex_eq(self, latex, label)
[docs] def energy_balance_deriv(self, increment_filter, k): r""" Calculate partial derivatives of energy balance. Parameters ---------- increment_filter : ndarray Matrix for filtering non-changing variables. k : int Position of derivatives in Jacobian matrix (k-th equation). """ i = self.inl[0] o = self.outl[0] if i.m.is_var: self.jacobian[k, i.m.J_col] = o.h.val_SI - i.h.val_SI if i.h.is_var: self.jacobian[k, i.h.J_col] = -i.m.val_SI if o.h.is_var: self.jacobian[k, o.h.J_col] = i.m.val_SI # custom variable Q if self.Q.is_var: self.jacobian[k, self.Q.J_col] = -1
[docs] def darcy_func(self): r""" Equation for pressure drop calculation from darcy friction factor. Returns ------- residual : float Residual value of equation. .. math:: 0 = p_{in} - p_{out} - \frac{8 \cdot |\dot{m}_{in}| \cdot \dot{m}_{in} \cdot \frac{v_{in}+v_{out}}{2} \cdot L \cdot \lambda\left(Re, ks, D\right)}{\pi^2 \cdot D^5}\\ Re = \frac{4 \cdot |\dot{m}_{in}|}{\pi \cdot D \cdot \frac{\eta_{in}+\eta_{out}}{2}}\\ \eta: \text{dynamic viscosity}\\ v: \text{specific volume}\\ \lambda: \text{darcy friction factor} """ i = self.inl[0] o = self.outl[0] if abs(i.m.val_SI) < 1e-4: return i.p.val_SI - o.p.val_SI visc_i = i.calc_viscosity(T0=i.T.val_SI) visc_o = o.calc_viscosity(T0=o.T.val_SI) v_i = i.calc_vol(T0=i.T.val_SI) v_o = o.calc_vol(T0=o.T.val_SI) Re = 4 * abs(i.m.val_SI) / (math.pi * self.D.val * (visc_i + visc_o) / 2) return ( (i.p.val_SI - o.p.val_SI) - 8 * abs(i.m.val_SI) * i.m.val_SI * (v_i + v_o) / 2 * self.L.val * dff(Re, self.ks.val, self.D.val) / (math.pi ** 2 * self.D.val ** 5) )
[docs] def darcy_func_doc(self, label): r""" Equation for pressure drop calculation from darcy friction factor. Parameters ---------- label : str Label for equation. Returns ------- latex : str LaTeX code of equations applied. """ latex = ( r'\begin{split}' + '\n' r'0 = &p_\mathrm{in}-p_\mathrm{out}-' r'\frac{8\cdot|\dot{m}_\mathrm{in}| \cdot\dot{m}_\mathrm{in}' r'\cdot \frac{v_\mathrm{in}+v_\mathrm{out}}{2} \cdot L \cdot' r'\lambda\left(Re, ks, D\right)}{\pi^2 \cdot D^5}\\' + '\n' r'Re =&\frac{4 \cdot |\dot{m}_\mathrm{in}|}{\pi \cdot D \cdot' r'\frac{\eta_\mathrm{in}+\eta_\mathrm{out}}{2}}\\' + '\n' r'\end{split}' ) return generate_latex_eq(self, latex, label)
[docs] def darcy_deriv(self, increment_filter, k): r""" Calculate partial derivatives of hydro group (pressure drop). Parameters ---------- increment_filter : ndarray Matrix for filtering non-changing variables. k : int Position of derivatives in Jacobian matrix (k-th equation). """ func = self.darcy_func i = self.inl[0] o = self.outl[0] if self.is_variable(i.m, increment_filter): self.jacobian[k, i.m.J_col] = self.numeric_deriv(func, 'm', i) if self.is_variable(i.p, increment_filter): self.jacobian[k, i.p.J_col] = self.numeric_deriv(func, 'p', i) if self.is_variable(i.h, increment_filter): self.jacobian[k, i.h.J_col] = self.numeric_deriv(func, 'h', i) if self.is_variable(o.p, increment_filter): self.jacobian[k, o.p.J_col] = self.numeric_deriv(func, 'p', o) if self.is_variable(o.h, increment_filter): self.jacobian[k, o.h.J_col] = self.numeric_deriv(func, 'h', o) # custom variables of hydro group for variable_name in self.darcy_group.elements: parameter = self.get_attr(variable_name) if parameter.is_var: self.jacobian[k, parameter.J_col] = ( self.numeric_deriv(func, variable_name, None) )
[docs] def hazen_williams_func(self): r""" Equation for pressure drop calculation from Hazen-Williams equation. Returns ------- residual : float Residual value of equation. .. math:: 0 = \left(p_{in} - p_{out} \right) \cdot \left(-1\right)^i - \frac{10.67 \cdot |\dot{m}_{in}| ^ {1.852} \cdot L}{ks^{1.852} \cdot D^{4.871}} \cdot g \cdot \left(\frac{v_{in} + v_{out}}{2}\right)^{0.852} i = \begin{cases} 0 & \dot{m}_{in} \geq 0\\ 1 & \dot{m}_{in} < 0 \end{cases} Note ---- Gravity :math:`g` is set to :math:`9.81 \frac{m}{s^2}` """ i = self.inl[0] o = self.outl[0] if abs(i.m.val_SI) < 1e-4: return i.p.val_SI - o.p.val_SI v_i = i.calc_vol(T0=i.T.val_SI) v_o = o.calc_vol(T0=o.T.val_SI) return ( math.copysign(i.p.val_SI - o.p.val_SI, i.m.val_SI) - ( 10.67 * abs(i.m.val_SI) ** 1.852 * self.L.val / (self.ks_HW.val ** 1.852 * self.D.val ** 4.871) ) * (9.81 * ((v_i + v_o) / 2) ** 0.852) )
[docs] def hazen_williams_func_doc(self, label): r""" Equation for pressure drop calculation from Hazen-Williams equation. Parameters ---------- label : str Label for equation. Returns ------- latex : str LaTeX code of equations applied. """ latex = ( r'0 = \left(p_\mathrm{in} - p_\mathrm{out} \right) -' r'\frac{10.67 \cdot |\dot{m}_\mathrm{in}| ^ {1.852}' r'\cdot L}{ks^{1.852} \cdot D^{4.871}} \cdot g \cdot' r'\left(\frac{v_\mathrm{in}+ v_\mathrm{out}}{2}\right)^{0.852}' ) return generate_latex_eq(self, latex, label)
[docs] def hazen_williams_deriv(self, increment_filter, k): r""" Calculate partial derivatives of hydro group (pressure drop). Parameters ---------- increment_filter : ndarray Matrix for filtering non-changing variables. k : int Position of derivatives in Jacobian matrix (k-th equation). """ func = self.hazen_williams_func i = self.inl[0] o = self.outl[0] if self.is_variable(i.m, increment_filter): self.jacobian[k, i.m.J_col] = self.numeric_deriv(func, 'm', i) if self.is_variable(i.p, increment_filter): self.jacobian[k, i.p.J_col] = self.numeric_deriv(func, 'p', i) if self.is_variable(i.h, increment_filter): self.jacobian[k, i.h.J_col] = self.numeric_deriv(func, 'h', i) if self.is_variable(o.p, increment_filter): self.jacobian[k, o.p.J_col] = self.numeric_deriv(func, 'p', o) if self.is_variable(o.h, increment_filter): self.jacobian[k, o.h.J_col] = self.numeric_deriv(func, 'h', o) # custom variables of hydro group for variable_name in self.hw_group.elements: parameter = self.get_attr(variable_name) if parameter.is_var: self.jacobian[k, parameter.J_col] = ( self.numeric_deriv(func, variable_name, None) )
[docs] def kA_group_func(self): r""" Calculate heat transfer from heat transfer coefficient. Returns ------- residual : float Residual value of equation. .. math:: 0 = \dot{m}_{in} \cdot \left( h_{out} - h_{in}\right) + kA \cdot \Delta T_{log} \Delta T_{log} = \begin{cases} \frac{T_{in}-T_{out}}{\ln{\frac{T_{in}-T_{amb}} {T_{out}-T_{amb}}}} & T_{in} > T_{out} \\ \frac{T_{out}-T_{in}}{\ln{\frac{T_{out}-T_{amb}} {T_{in}-T_{amb}}}} & T_{in} < T_{out}\\ 0 & T_{in} = T_{out} \end{cases} T_{amb}: \text{ambient temperature} """ i = self.inl[0] o = self.outl[0] ttd_1 = i.calc_T() - self.Tamb.val_SI ttd_2 = o.calc_T() - self.Tamb.val_SI # For numerical stability: If temperature differences have # different sign use mean difference to avoid negative logarithm. if (ttd_1 / ttd_2) < 0: td_log = (ttd_2 + ttd_1) / 2 elif ttd_1 > ttd_2: td_log = (ttd_1 - ttd_2) / math.log(ttd_1 / ttd_2) elif ttd_1 < ttd_2: td_log = (ttd_2 - ttd_1) / math.log(ttd_2 / ttd_1) else: # both values are equal td_log = ttd_2 return i.m.val_SI * (o.h.val_SI - i.h.val_SI) + self.kA.val * td_log
[docs] def kA_group_func_doc(self, label): r""" Calculate heat transfer from heat transfer coefficient. Parameters ---------- label : str Label for equation. Returns ------- latex : str LaTeX code of equations applied. """ latex = ( r'\begin{split}' + '\n' r'0=&\dot{m}_\mathrm{in}\cdot\left(h_\mathrm{out}-' r'h_\mathrm{in}\right)+kA \cdot \Delta T_\mathrm{log}\\' + '\n' r'\Delta T_\mathrm{log} = &\begin{cases}' + '\n' r'\frac{T_\mathrm{in}-T_\mathrm{out}}{\ln{\frac{T_\mathrm{in}-' r'T_\mathrm{amb}}{T_\mathrm{out}-T_\mathrm{amb}}}} &' r' T_\mathrm{in} > T_\mathrm{out} \\' + '\n' r'\frac{T_\mathrm{out}-T_\mathrm{in}}{\ln{\frac{' r'T_\mathrm{out}-T_\mathrm{amb}}{T_\mathrm{in}-' r'T_\mathrm{amb}}}} & T_\mathrm{in} < T_\mathrm{out}\\' + '\n' r'0 & T_\mathrm{in} = T_\mathrm{out}' + '\n' r'\end{cases}\\' + '\n' r'T_\mathrm{amb} =& \text{ambient temperature}' + '\n' r'\end{split}' ) return generate_latex_eq(self, latex, label)
[docs] def kA_group_deriv(self, increment_filter, k): r""" Calculate partial derivatives of kA group. Parameters ---------- increment_filter : ndarray Matrix for filtering non-changing variables. k : int Position of derivatives in Jacobian matrix (k-th equation). """ f = self.kA_group_func i = self.inl[0] o = self.outl[0] if self.is_variable(i.m, increment_filter): self.jacobian[k, i.m.J_col] = o.h.val_SI - i.h.val_SI if self.is_variable(i.p, increment_filter): self.jacobian[k, i.p.J_col] = self.numeric_deriv(f, 'p', i) if self.is_variable(i.h, increment_filter): self.jacobian[k, i.h.J_col] = self.numeric_deriv(f, 'h', i) if self.is_variable(o.p, increment_filter): self.jacobian[k, o.p.J_col] = self.numeric_deriv(f, 'p', o) if self.is_variable(o.h, increment_filter): self.jacobian[k, o.h.J_col] = self.numeric_deriv(f, 'h', o) if self.kA.is_var: self.jacobian[k, self.kA.J_col] = self.numeric_deriv(f, self.vars[self.kA])
[docs] def kA_char_group_func(self): r""" Calculate heat transfer from heat transfer coefficient characteristic. Returns ------- residual : float Residual value of equation. .. math:: 0 = \dot{m}_{in} \cdot \left( h_{out} - h_{in}\right) + kA_{design} \cdot f_{kA} \cdot \Delta T_{log} \Delta T_{log} = \begin{cases} \frac{T_{in}-T_{out}}{\ln{\frac{T_{in}-T_{amb}} {T_{out}-T_{amb}}}} & T_{in} > T_{out} \\ \frac{T_{out}-T_{in}}{\ln{\frac{T_{out}-T_{amb}} {T_{in}-T_{amb}}}} & T_{in} < T_{out}\\ 0 & T_{in} = T_{out} \end{cases} f_{kA} = \frac{2}{1 + \frac{1}{f\left( expr\right)}} T_{amb}: \text{ambient temperature} Note ---- For standard function of f\ :subscript:`kA` \ see module :py:mod:`tespy.data`. """ p = self.kA_char.param expr = self.get_char_expr(p, **self.kA_char.char_params) i = self.inl[0] o = self.outl[0] # For numerical stability: If temperature differences have # different sign use mean difference to avoid negative logarithm. ttd_1 = i.calc_T() - self.Tamb.val_SI ttd_2 = o.calc_T() - self.Tamb.val_SI if (ttd_1 / ttd_2) < 0: td_log = (ttd_2 + ttd_1) / 2 elif ttd_1 > ttd_2: td_log = (ttd_1 - ttd_2) / math.log(ttd_1 / ttd_2) elif ttd_1 < ttd_2: td_log = (ttd_2 - ttd_1) / math.log(ttd_2 / ttd_1) else: # both values are equal td_log = ttd_2 fkA = 2 / (1 + 1 / self.kA_char.char_func.evaluate(expr)) return i.m.val_SI * (o.h.val_SI - i.h.val_SI) + self.kA.design * fkA * td_log
[docs] def kA_char_group_func_doc(self, label): r""" Calculate heat transfer from heat transfer coefficient characteristic. Parameters ---------- label : str Label for equation. Returns ------- latex : str LaTeX code of equations applied. """ latex = ( r'\begin{split}' + '\n' r'0=&\dot{m}_\mathrm{in}\cdot\left(h_\mathrm{out}-' r'h_\mathrm{in}\right)+kA_\mathrm{design} \cdot f_\mathrm{kA}' r' \cdot \Delta T_\mathrm{log}\\' + '\n' r'\Delta T_\mathrm{log} = &\begin{cases}' + '\n' r'\frac{T_\mathrm{in}-T_\mathrm{out}}{\ln{\frac{T_\mathrm{in}-' r'T_\mathrm{amb}}{T_\mathrm{out}-T_\mathrm{amb}}}} &' r' T_\mathrm{in} > T_\mathrm{out} \\' + '\n' r'\frac{T_\mathrm{out}-T_\mathrm{in}}{\ln{\frac{' r'T_\mathrm{out}-T_\mathrm{amb}}{T_\mathrm{in}-' r'T_\mathrm{amb}}}} & T_\mathrm{in} < T_\mathrm{out}\\' + '\n' r'0 & T_\mathrm{in} = T_\mathrm{out}' + '\n' r'\end{cases}\\' + '\n' r'f_{kA}=&\frac{2}{1 + \frac{1}{f\left(X\right)}}\\' + '\n' r'T_\mathrm{amb} =& \text{ambient temperature}' + '\n' r'\end{split}' ) return generate_latex_eq(self, latex, label)
[docs] def kA_char_group_deriv(self, increment_filter, k): r""" Calculate partial derivatives of kA characteristics. Parameters ---------- increment_filter : ndarray Matrix for filtering non-changing variables. k : int Position of derivatives in Jacobian matrix (k-th equation). """ f = self.kA_char_group_func i = self.inl[0] o = self.outl[0] if self.is_variable(i.m, increment_filter): self.jacobian[k, i.m.J_col] = self.numeric_deriv(f, 'm', i) if self.is_variable(i.p, increment_filter): self.jacobian[k, i.p.J_col] = self.numeric_deriv(f, 'p', i) if self.is_variable(i.h, increment_filter): self.jacobian[k, i.h.J_col] = self.numeric_deriv(f, 'h', i) if self.is_variable(o.p, increment_filter): self.jacobian[k, o.p.J_col] = self.numeric_deriv(f, 'p', o) if self.is_variable(o.h, increment_filter): self.jacobian[k, o.h.J_col] = self.numeric_deriv(f, 'h', o)
[docs] def bus_func(self, bus): r""" Calculate the value of the bus function. Parameters ---------- bus : tespy.connections.bus.Bus TESPy bus object. Returns ------- val : float Value of energy transfer :math:`\dot{E}`. This value is passed to :py:meth:`tespy.components.component.Component.calc_bus_value` for value manipulation according to the specified characteristic line of the bus. .. math:: \dot{E} = \dot{m}_{in} \cdot \left( h_{out} - h_{in} \right) """ return self.inl[0].m.val_SI * ( self.outl[0].h.val_SI - self.inl[0].h.val_SI)
[docs] def bus_func_doc(self, bus): r""" Return LaTeX string of the bus function. Parameters ---------- bus : tespy.connections.bus.Bus TESPy bus object. Returns ------- latex : str LaTeX string of bus function. """ return ( r'\dot{m}_\mathrm{in} \cdot \left(h_\mathrm{out} - ' r'h_\mathrm{in} \right)')
[docs] def bus_deriv(self, bus): r""" Calculate partial derivatives of the bus function. Parameters ---------- bus : tespy.connections.bus.Bus TESPy bus object. Returns ------- deriv : ndarray Matrix of partial derivatives. """ f = self.calc_bus_value if self.inl[0].m.is_var: if self.inl[0].m.J_col not in bus.jacobian: bus.jacobian[self.inl[0].m.J_col] = 0 bus.jacobian[self.inl[0].m.J_col] -= self.numeric_deriv(f, 'm', self.inl[0], bus=bus) if self.inl[0].h.is_var: if self.inl[0].h.J_col not in bus.jacobian: bus.jacobian[self.inl[0].h.J_col] = 0 bus.jacobian[self.inl[0].h.J_col] -= self.numeric_deriv(f, 'h', self.inl[0], bus=bus) if self.outl[0].h.is_var: if self.outl[0].h.J_col not in bus.jacobian: bus.jacobian[self.outl[0].h.J_col] = 0 bus.jacobian[self.outl[0].h.J_col] -= self.numeric_deriv(f, 'h', self.outl[0], bus=bus)
[docs] def initialise_source(self, c, key): r""" Return a starting value for pressure and enthalpy the outlets. Parameters ---------- c : tespy.connections.connection.Connection Connection to perform initialisation on. key : str Fluid property to retrieve. Returns ------- val : float Starting value for pressure/enthalpy in SI units. .. math:: val = \begin{cases} \begin{cases} 1 \cdot 10^5 \; \frac{\text{J}}{\text{kg}} & \dot{Q} < 0\\ 3 \cdot 10^5 \; \frac{\text{J}}{\text{kg}} & \dot{Q} = 0\\ 5 \cdot 10^5 \; \frac{\text{J}}{\text{kg}} & \dot{Q} > 0 \end{cases} & \text{key = 'h'}\\ \; \; \; \; 10^5 \text{Pa} & \text{key = 'p'} \end{cases} """ if key == 'p': return 1e5 elif key == 'h': if self.Q.val < 0 and self.Q.is_set: return 1e5 elif self.Q.val > 0 and self.Q.is_set: return 5e5 else: return 3e5
[docs] def initialise_target(self, c, key): r""" Return a starting value for pressure and enthalpy the inlets. Parameters ---------- c : tespy.connections.connection.Connection Connection to perform initialisation on. key : str Fluid property to retrieve. Returns ------- val : float Starting value for pressure/enthalpy in SI units. .. math:: val = \begin{cases} 1 \cdot 10^5 & \text{key = 'p'}\\ \begin{cases} 5 \cdot 10^5 & \dot{Q} < 0\\ 3 \cdot 10^5 & \dot{Q} = 0\\ 1 \cdot 10^5 & \dot{Q} > 0 \end{cases} & \text{key = 'h'}\\ \end{cases} """ if key == 'p': return 1e5 elif key == 'h': if self.Q.val < 0 and self.Q.is_set: return 5e5 elif self.Q.val > 0 and self.Q.is_set: return 1e5 else: return 3e5
[docs] def calc_parameters(self): r"""Postprocessing parameter calculation.""" i = self.inl[0] o = self.outl[0] self.Q.val = i.m.val_SI * (o.h.val_SI - i.h.val_SI) self.pr.val = o.p.val_SI / i.p.val_SI self.zeta.val = self.calc_zeta(i, o) if self.Tamb.is_set: ttd_1 = i.T.val_SI - self.Tamb.val_SI ttd_2 = o.T.val_SI - self.Tamb.val_SI if (ttd_1 / ttd_2) < 0: td_log = np.nan if ttd_1 > ttd_2: td_log = (ttd_1 - ttd_2) / math.log(ttd_1 / ttd_2) elif ttd_1 < ttd_2: td_log = (ttd_2 - ttd_1) / math.log(ttd_2 / ttd_1) else: # both values are equal td_log = ttd_1 self.kA.val = abs(self.Q.val / td_log) self.kA.is_result = True else: self.kA.is_result = False
[docs] def entropy_balance(self): r""" Calculate entropy balance of a simple heat exchanger. The allocation of the entropy streams due to heat exchanged and due to irreversibility is performed by solving for T: .. math:: h_\mathrm{out} - h_\mathrm{in} = \int_\mathrm{out}^\mathrm{in} v \cdot dp - \int_\mathrm{out}^\mathrm{in} T \cdot ds As solving :math:`\int_\mathrm{out}^\mathrm{in} v \cdot dp` for non isobaric processes would require perfect process knowledge (the path) on how specific volume and pressure change throught the component, the heat transfer is splitted into three separate virtual processes: - in->in*: decrease pressure to :math:`p_\mathrm{in*}=p_\mathrm{in}\cdot\sqrt{\frac{p_\mathrm{out}}{p_\mathrm{in}}}` without changing enthalpy. - in*->out* transfer heat without changing pressure. :math:`h_\mathrm{out*}-h_\mathrm{in*}=h_\mathrm{out}-h_\mathrm{in}` - out*->out decrease pressure to outlet pressure :math:`p_\mathrm{out}` without changing enthalpy. Note ---- The entropy balance makes the follwing parameter available: .. math:: \text{S\_Q}=\dot{m} \cdot \left(s_\mathrm{out*}-s_\mathrm{in*} \right)\\ \text{S\_irr}=\dot{m} \cdot \left(s_\mathrm{out}-s_\mathrm{in} \right) - \text{S\_Q}\\ \text{T\_mQ}=\frac{\dot{Q}}{\text{S\_Q}} """ i = self.inl[0] o = self.outl[0] p1_star = i.p.val_SI * (o.p.val_SI / i.p.val_SI) ** 0.5 s1_star = s_mix_ph( p1_star, i.h.val_SI, i.fluid_data, i.mixing_rule, T0=i.T.val_SI ) s2_star = s_mix_ph( p1_star, o.h.val_SI, o.fluid_data, o.mixing_rule, T0=o.T.val_SI ) self.S_Q = i.m.val_SI * (s2_star - s1_star) self.S_irr = i.m.val_SI * (o.s.val_SI - i.s.val_SI) - self.S_Q self.T_mQ = (o.h.val_SI - i.h.val_SI) / (s2_star - s1_star)
[docs] def exergy_balance(self, T0): r""" Calculate exergy balance of a simple heat exchanger. The exergy of heat is calculated by allocation of thermal and mechanical share of exergy in the physical exergy. Depending on the temperature levels at the inlet and outlet of the heat exchanger as well as the direction of heat transfer (input or output) fuel and product exergy are calculated as follows. Parameters ---------- T0 : float Ambient temperature T0 / K. Note ---- If the fluid transfers heat to the ambient, you can specify :code:`mysimpleheatexchanger.set_attr(dissipative=False)` if you do NOT want the exergy production nan (only applicable in case :math:`\dot{Q}<0`). .. math :: \dot{E}_\mathrm{P} = \begin{cases} \begin{cases} \begin{cases} \text{not defined (nan)} & \text{if dissipative}\\ \dot{E}_\mathrm{in}^\mathrm{T} - \dot{E}_\mathrm{out}^\mathrm{T} & \text{else}\\ \end{cases} & T_\mathrm{in}, T_\mathrm{out} \geq T_0\\ \dot{E}_\mathrm{out}^\mathrm{T} & T_\mathrm{in} \geq T_0 > T_\mathrm{out}\\ \dot{E}_\mathrm{out}^\mathrm{T} - \dot{E}_\mathrm{in}^\mathrm{T} & T_0 \geq T_\mathrm{in}, T_\mathrm{out}\\ \end{cases} & \dot{Q} < 0\\ \begin{cases} \dot{E}_\mathrm{out}^\mathrm{PH} - \dot{E}_\mathrm{in}^\mathrm{PH} & T_\mathrm{in}, T_\mathrm{out} \geq T_0\\ \dot{E}_\mathrm{in}^\mathrm{T} + \dot{E}_\mathrm{out}^\mathrm{T} & T_\mathrm{out} > T_0 \geq T_\mathrm{in}\\ \dot{E}_\mathrm{in}^\mathrm{T} - \dot{E}_\mathrm{out}^\mathrm{T} + \dot{E}_\mathrm{out}^\mathrm{M} - \dot{E}_\mathrm{in}^\mathrm{M} + & T_0 \geq T_\mathrm{in}, T_\mathrm{out}\\ \end{cases} & \dot{Q} > 0\\ \end{cases} \dot{E}_\mathrm{F} = \begin{cases} \begin{cases} \dot{E}_\mathrm{in}^\mathrm{PH} - \dot{E}_\mathrm{out}^\mathrm{PH} & T_\mathrm{in}, T_\mathrm{out} \geq T_0\\ \dot{E}_\mathrm{in}^\mathrm{T} + \dot{E}_\mathrm{in}^\mathrm{M} + \dot{E}_\mathrm{out}^\mathrm{T} - \dot{E}_\mathrm{out}^\mathrm{M} & T_\mathrm{in} \geq T_0 > T_\mathrm{out}\\ \dot{E}_\mathrm{out}^\mathrm{T} - \dot{E}_\mathrm{in}^\mathrm{T} + \dot{E}_\mathrm{in}^\mathrm{M} - \dot{E}_\mathrm{out}^\mathrm{M} + & T_0 \geq T_\mathrm{in}, T_\mathrm{out}\\ \end{cases} & \dot{Q} < 0\\ \begin{cases} \dot{E}_\mathrm{out}^\mathrm{T} - \dot{E}_\mathrm{in}^\mathrm{T} & T_\mathrm{in}, T_\mathrm{out} \geq T_0\\ \dot{E}_\mathrm{in}^\mathrm{T} + \dot{E}_\mathrm{in}^\mathrm{M} - \dot{E}_\mathrm{out}^\mathrm{M} & T_\mathrm{out} > T_0 \geq T_\mathrm{in}\\ \dot{E}_\mathrm{in}^\mathrm{T}-\dot{E}_\mathrm{out}^\mathrm{T} & T_0 \geq T_\mathrm{in}, T_\mathrm{out}\\ \end{cases} & \dot{Q} > 0\\ \end{cases} \dot{E}_\mathrm{bus} = \begin{cases} \begin{cases} \dot{E}_\mathrm{P} & \text{other cases}\\ \dot{E}_\mathrm{in}^\mathrm{T} & T_\mathrm{in} \geq T_0 > T_\mathrm{out}\\ \end{cases} & \dot{Q} < 0\\ \dot{E}_\mathrm{F} & \dot{Q} > 0\\ \end{cases} """ if self.dissipative.val is None: self.dissipative.val = True msg = ( "In a future version of TESPy, the dissipative property must " "explicitly be set to True or False in the context of the " f"exergy analysis for component {self.label}." ) logger.warning(msg) if self.Q.val < 0: if self.inl[0].T.val_SI >= T0 and self.outl[0].T.val_SI >= T0: if self.dissipative.val: self.E_P = np.nan else: self.E_P = self.inl[0].Ex_therm - self.outl[0].Ex_therm self.E_F = self.inl[0].Ex_physical - self.outl[0].Ex_physical self.E_bus = { "chemical": 0, "physical": 0, "massless": self.E_P } elif self.inl[0].T.val_SI >= T0 and self.outl[0].T.val_SI < T0: self.E_P = self.outl[0].Ex_therm self.E_F = self.inl[0].Ex_therm + self.outl[0].Ex_therm + ( self.inl[0].Ex_mech - self.outl[0].Ex_mech) self.E_bus = { "chemical": 0, "physical": 0, "massless": self.inl[0].Ex_therm + self.outl[0].Ex_therm } elif self.inl[0].T.val_SI <= T0 and self.outl[0].T.val_SI <= T0: self.E_P = self.outl[0].Ex_therm - self.inl[0].Ex_therm self.E_F = self.outl[0].Ex_therm - self.outl[0].Ex_therm + ( self.inl[0].Ex_mech - self.outl[0].Ex_mech) self.E_bus = { "chemical": 0, "physical": 0, "massless": self.E_P } else: msg = ('Exergy balance of simple heat exchangers, where ' 'outlet temperature is higher than inlet temperature ' 'with heat extracted is not implmented.') logger.warning(msg) self.E_P = np.nan self.E_F = np.nan self.E_bus = { "chemical": np.nan, "physical": np.nan, "massless": np.nan } elif self.Q.val > 0: if self.inl[0].T.val_SI >= T0 - 1e-6 and self.outl[0].T.val_SI >= T0 - 1e-6: self.E_P = self.outl[0].Ex_physical - self.inl[0].Ex_physical self.E_F = self.outl[0].Ex_therm - self.inl[0].Ex_therm self.E_bus = { "chemical": 0, "physical": 0, "massless": self.E_F } elif self.inl[0].T.val_SI <= T0 and self.outl[0].T.val_SI > T0: self.E_P = self.outl[0].Ex_therm + self.inl[0].Ex_therm self.E_F = self.inl[0].Ex_therm + ( self.inl[0].Ex_mech - self.outl[0].Ex_mech) self.E_bus = { "chemical": 0, "physical": 0, "massless": self.inl[0].Ex_therm } elif self.inl[0].T.val_SI < T0 and self.outl[0].T.val_SI < T0: if self.dissipative.val: self.E_P = np.nan else: self.E_P = self.inl[0].Ex_therm - self.outl[0].Ex_therm + ( self.outl[0].Ex_mech - self.inl[0].Ex_mech ) self.E_F = self.inl[0].Ex_therm - self.outl[0].Ex_therm self.E_bus = { "chemical": 0, "physical": 0, "massless": self.E_F } else: msg = ('Exergy balance of simple heat exchangers, where ' 'inlet temperature is higher than outlet temperature ' 'with heat injected is not implmented.') logger.warning(msg) self.E_P = np.nan self.E_F = np.nan self.E_bus = { "chemical": np.nan, "physical": np.nan, "massless": self.E_F } else: # fully dissipative self.E_P = np.nan self.E_F = self.inl[0].Ex_physical - self.outl[0].Ex_physical self.E_bus = { "chemical": np.nan, "physical": np.nan, "massless": np.nan } if np.isnan(self.E_P): self.E_D = self.E_F else: self.E_D = self.E_F - self.E_P self.epsilon = self._calc_epsilon()
[docs] def get_plotting_data(self): """Generate a dictionary containing FluProDia plotting information. Returns ------- data : dict A nested dictionary containing the keywords required by the :code:`calc_individual_isoline` method of the :code:`FluidPropertyDiagram` class. First level keys are the connection index ('in1' -> 'out1', therefore :code:`1` etc.). """ return { 1: { 'isoline_property': 'p', 'isoline_value': self.inl[0].p.val, 'isoline_value_end': self.outl[0].p.val, 'starting_point_property': 's', 'starting_point_value': self.inl[0].s.val, 'ending_point_property': 's', 'ending_point_value': self.outl[0].s.val } }
[docs] class HeatExchangerSimple(SimpleHeatExchanger): def __init__(self, label, **kwargs): super().__init__(label, **kwargs) msg = ( "The API for the component HeatExchangerSimple will change with " "the next major release, please import SimpleHeatExchanger instead." ) warnings.warn(msg, FutureWarning)