# -*- coding: utf-8
"""Module of class Pump.
This file is part of project TESPy (github.com/oemof/tespy). It's copyrighted
by the contributors recorded in the version control history of the file,
available from its original location tespy/components/turbomachinery/pump.py
SPDX-License-Identifier: MIT
"""
import numpy as np
from tespy.components.component import component_registry
from tespy.components.turbomachinery.base import Turbomachine
from tespy.tools import logger
from tespy.tools.data_containers import ComponentCharacteristics as dc_cc
from tespy.tools.data_containers import ComponentProperties as dc_cp
from tespy.tools.document_models import generate_latex_eq
from tespy.tools.fluid_properties import isentropic
[docs]
@component_registry
class Pump(Turbomachine):
r"""
Class for axial or radial pumps.
**Mandatory Equations**
- :py:meth:`tespy.components.component.Component.fluid_func`
- :py:meth:`tespy.components.component.Component.mass_flow_func`
**Optional Equations**
- :py:meth:`tespy.components.component.Component.pr_func`
- :py:meth:`tespy.components.turbomachinery.base.Turbomachine.energy_balance_func`
- :py:meth:`tespy.components.turbomachinery.pump.Pump.eta_s_func`
- :py:meth:`tespy.components.turbomachinery.pump.Pump.eta_s_char_func`
- :py:meth:`tespy.components.turbomachinery.pump.Pump.flow_char_func`
Inlets/Outlets
- in1
- out1
Image
.. image:: /api/_images/Pump.svg
:alt: flowsheet of the pump
:align: center
:class: only-light
.. image:: /api/_images/Pump_darkmode.svg
:alt: flowsheet of the pump
:align: center
:class: only-dark
Parameters
----------
label : str
The label of the component.
design : list
List containing design parameters (stated as String).
offdesign : list
List containing offdesign parameters (stated as String).
design_path : str
Path to the components design case.
local_offdesign : boolean
Treat this component in offdesign mode in a design calculation.
local_design : boolean
Treat this component in design mode in an offdesign calculation.
char_warnings : boolean
Ignore warnings on default characteristics usage for this component.
printout : boolean
Include this component in the network's results printout.
P : float, dict
Power, :math:`P/\text{W}`
eta_s : float, dict
Isentropic efficiency, :math:`\eta_s/1`
pr : float, dict, :code:`"var"`
Outlet to inlet pressure ratio, :math:`pr/1`
eta_s_char : tespy.tools.characteristics.CharLine, dict
Characteristic curve for isentropic efficiency, provide CharLine as
function :code:`func`.
flow_char : tespy.tools.characteristics.CharLine, dict
Characteristic curve for pressure rise as function of volumetric flow
:math:`x/\frac{\text{m}^3}{\text{s}} \, y/\text{Pa}`.
Example
-------
A pump with a known pump curve (difference pressure as function of
volumetric flow) pumps 1,5 l/s of water in design conditions. E.g. for a
given isentropic efficiency it is possible to calculate power consumption
and pressure at the pump.
>>> from tespy.components import Sink, Source, Pump
>>> from tespy.connections import Connection
>>> from tespy.networks import Network
>>> from tespy.tools.characteristics import CharLine
>>> import shutil
>>> nw = Network(p_unit='bar', T_unit='C', h_unit='kJ / kg', v_unit='l / s',
... iterinfo=False)
>>> si = Sink('sink')
>>> so = Source('source')
>>> pu = Pump('pump')
>>> pu.component()
'pump'
>>> inc = Connection(so, 'out1', pu, 'in1')
>>> outg = Connection(pu, 'out1', si, 'in1')
>>> nw.add_conns(inc, outg)
After that we calculate offdesign performance using the pump curve and a
characteristic function for the pump efficiency. We can calulate the
offdesign efficiency and the volumetric flow, if the difference pressure
changed. The default characteristc lines are to be found in the
:py:mod:`tespy.data` module. Of course you are able to specify your own
characteristcs, like done for the :code:`flow_char`. More information on
how to specify characteristic functions are given in the corresponding part
of the online documentation.
>>> v = np.array([0, 0.4, 0.8, 1.2, 1.6, 2]) / 1000
>>> dp = np.array([15, 14, 12, 9, 5, 0]) * 1e5
>>> char = CharLine(x=v, y=dp)
>>> pu.set_attr(eta_s=0.8, flow_char={'char_func': char, 'is_set': True},
... design=['eta_s'], offdesign=['eta_s_char'])
>>> inc.set_attr(fluid={'water': 1}, p=1, T=20, v=1.5, design=['v'])
>>> nw.solve('design')
>>> nw.save('tmp')
>>> round(pu.pr.val, 0)
7.0
>>> round(outg.p.val - inc.p.val, 0)
6.0
>>> round(pu.P.val, 0)
1125.0
>>> outg.set_attr(p=12)
>>> nw.solve('offdesign', design_path='tmp')
>>> round(pu.eta_s.val, 2)
0.71
>>> round(inc.v.val, 1)
0.9
>>> shutil.rmtree('./tmp', ignore_errors=True)
"""
[docs]
@staticmethod
def component():
return 'pump'
[docs]
def get_parameters(self):
return {
'P': dc_cp(
min_val=0, num_eq=1,
deriv=self.energy_balance_deriv,
func=self.energy_balance_func,
latex=self.energy_balance_func_doc),
'eta_s': dc_cp(
min_val=0, max_val=1, num_eq=1,
deriv=self.eta_s_deriv,
func=self.eta_s_func,
latex=self.eta_s_func_doc),
'pr': dc_cp(
min_val=1, num_eq=1,
deriv=self.pr_deriv,
func=self.pr_func, func_params={'pr': 'pr'},
latex=self.pr_func_doc),
'eta_s_char': dc_cc(
param='v', num_eq=1,
deriv=self.eta_s_char_deriv,
func=self.eta_s_char_func,
latex=self.eta_s_char_func_doc),
'flow_char': dc_cc(
param='v', num_eq=1,
deriv=self.flow_char_deriv,
func=self.flow_char_func,
char_params={'type': 'abs', 'inconn': 0, 'outconn': 0},
latex=self.flow_char_func_doc)
}
[docs]
def eta_s_func(self):
r"""
Equation for given isentropic efficiency.
Returns
-------
residual : float
Residual value of equation.
.. math::
0 = -\left( h_{out} - h_{in} \right) \cdot \eta_{s} +
\left( h_{out,s} - h_{in} \right)
"""
i = self.inl[0]
o = self.outl[0]
return (
(o.h.val_SI - i.h.val_SI) * self.eta_s.val - (
isentropic(
i.p.val_SI,
i.h.val_SI,
o.p.val_SI,
i.fluid_data,
i.mixing_rule,
T0=None
) - self.inl[0].h.val_SI
)
)
[docs]
def eta_s_func_doc(self, label):
r"""
Equation for given isentropic efficiency.
Parameters
----------
label : str
Label for equation.
Returns
-------
latex : str
LaTeX code of equations applied.
"""
latex = (
r'0 =-\left(h_\mathrm{out}-h_\mathrm{in}\right)\cdot'
r'\eta_\mathrm{s}+\left(h_\mathrm{out,s}-h_\mathrm{in}\right)')
return generate_latex_eq(self, latex, label)
[docs]
def eta_s_deriv(self, increment_filter, k):
r"""
Partial derivatives for isentropic efficiency function.
Parameters
----------
increment_filter : ndarray
Matrix for filtering non-changing variables.
k : int
Position of derivatives in Jacobian matrix (k-th equation).
"""
i = self.inl[0]
o = self.outl[0]
f = self.eta_s_func
if self.is_variable(i.p, increment_filter):
self.jacobian[k, i.p.J_col] = self.numeric_deriv(f, 'p', i)
if self.is_variable(o.p, increment_filter):
self.jacobian[k, o.p.J_col] = self.numeric_deriv(f, 'p', o)
if self.is_variable(i.h, increment_filter):
self.jacobian[k, i.h.J_col] = self.numeric_deriv(f, 'h', i)
if self.is_variable(o.h, increment_filter):
self.jacobian[k, o.h.J_col] = self.eta_s.val
[docs]
def eta_s_char_func(self):
r"""
Equation for given isentropic efficiency characteristic.
Returns
-------
residual : float
Residual value of equation.
.. math::
0 = \left(h_{out}-h_{in}\right) \cdot \eta_{s,design}
\cdot f\left( expr \right) -\left( h_{out,s} - h_{in} \right)
"""
p = self.eta_s_char.param
expr = self.get_char_expr(p, **self.eta_s_char.char_params)
if not expr:
msg = ('Please choose a valid parameter, you want to link the '
'isentropic efficiency to at component ' + self.label + '.')
logger.error(msg)
raise ValueError(msg)
i = self.inl[0]
o = self.outl[0]
return (
(o.h.val_SI - i.h.val_SI)
* self.eta_s.design * self.eta_s_char.char_func.evaluate(expr)
- (
isentropic(
i.p.val_SI,
i.h.val_SI,
o.p.val_SI,
i.fluid_data,
i.mixing_rule,
T0=None
) - i.h.val_SI
)
)
[docs]
def eta_s_char_func_doc(self, label):
r"""
Equation for given isentropic efficiency characteristic.
Parameters
----------
label : str
Label for equation.
Returns
-------
latex : str
LaTeX code of equations applied.
"""
latex = (
r'0=\left(h_\mathrm{out}-h_\mathrm{in}\right)\cdot'
r'\eta_\mathrm{s,design}\cdot f\left( X \right)-'
r'\left( h_{out,s} - h_{in} \right)')
return generate_latex_eq(self, latex, label)
[docs]
def eta_s_char_deriv(self, increment_filter, k):
r"""
Partial derivatives for isentropic efficiency characteristic.
Parameters
----------
increment_filter : ndarray
Matrix for filtering non-changing variables.
k : int
Position of derivatives in Jacobian matrix (k-th equation).
"""
f = self.eta_s_char_func
i = self.inl[0]
o = self.outl[0]
if self.is_variable(i.m, increment_filter):
self.jacobian[k, i.m.J_col] = self.numeric_deriv(f, 'm', i)
if self.is_variable(i.p, increment_filter):
self.jacobian[k, i.p.J_col] = self.numeric_deriv(f, 'p', i)
if self.is_variable(i.h, increment_filter):
self.jacobian[k, i.h.J_col] = self.numeric_deriv(f, 'h', i)
if self.is_variable(o.p, increment_filter):
self.jacobian[k, o.p.J_col] = self.numeric_deriv(f, 'p', o)
if self.is_variable(o.h, increment_filter):
self.jacobian[k, o.h.J_col] = self.numeric_deriv(f, 'h', o)
[docs]
def flow_char_func(self):
r"""
Equation for given flow characteristic of a pump.
Returns
-------
residual : float
Residual value of equation.
.. math::
0 = p_{out} - p_{in} - f\left( expr \right)
"""
p = self.flow_char.param
expr = self.get_char_expr(p, **self.flow_char.char_params)
return (
self.outl[0].p.val_SI - self.inl[0].p.val_SI -
self.flow_char.char_func.evaluate(expr))
[docs]
def flow_char_func_doc(self, label):
r"""
Equation for given flow characteristic of a pump.
Parameters
----------
label : str
Label for equation.
Returns
-------
latex : str
LaTeX code of equations applied.
"""
latex = (
r'0=p_\mathrm{out}-p_\mathrm{in}-f\left(X\right)')
return generate_latex_eq(self, latex, label)
[docs]
def flow_char_deriv(self, increment_filter, k):
r"""
Partial derivatives for flow characteristic.
Parameters
----------
increment_filter : ndarray
Matrix for filtering non-changing variables.
k : int
Position of derivatives in Jacobian matrix (k-th equation).
"""
f = self.flow_char_func
i = self.inl[0]
o = self.outl[0]
if self.is_variable(i.m, increment_filter):
self.jacobian[k, i.m.J_col] = self.numeric_deriv(f, 'm', i)
if self.is_variable(i.p, increment_filter):
self.jacobian[k, i.p.J_col] = self.numeric_deriv(f, 'p', i)
if self.is_variable(i.h, increment_filter):
self.jacobian[k, i.h.J_col] = self.numeric_deriv(f, 'h', i)
if self.is_variable(o.p, increment_filter):
self.jacobian[k, o.p.J_col] = self.numeric_deriv(f, 'p', o)
[docs]
def convergence_check(self):
r"""
Perform a convergence check.
Note
----
Manipulate enthalpies/pressure at inlet and outlet if not specified by
user to match physically feasible constraints.
"""
i = self.inl[0]
o = self.outl[0]
if o.p.is_var and o.p.val_SI < i.p.val_SI:
o.p.val_SI = o.p.val_SI * 2
if i.p.is_var and o.p.val_SI < i.p.val_SI:
i.p.val_SI = o.p.val_SI * 0.5
if o.h.is_var and o.h.val_SI < i.h.val_SI:
o.h.val_SI = o.h.val_SI * 1.1
if i.h.is_var and o.h.val_SI < i.h.val_SI:
i.h.val_SI = o.h.val_SI * 0.9
if self.flow_char.is_set:
vol = i.calc_vol(T0=i.T.val_SI)
expr = i.m.val_SI * vol
if expr > self.flow_char.char_func.x[-1] and i.m.is_var:
i.m.val_SI = self.flow_char.char_func.x[-1] / vol
elif expr < self.flow_char.char_func.x[1] and i.m.is_var:
i.m.val_SI = self.flow_char.char_func.x[0] / vol
else:
pass
[docs]
@staticmethod
def initialise_Source(c, key):
r"""
Return a starting value for pressure and enthalpy at outlet.
Parameters
----------
c : tespy.connections.connection.Connection
Connection to perform initialisation on.
key : str
Fluid property to retrieve.
Returns
-------
val : float
Starting value for pressure/enthalpy in SI units.
.. math::
val = \begin{cases}
10^6 & \text{key = 'p'}\\
3 \cdot 10^5 & \text{key = 'h'}
\end{cases}
"""
if key == 'p':
return 10e5
elif key == 'h':
return 3e5
[docs]
@staticmethod
def initialise_target(c, key):
r"""
Return a starting value for pressure and enthalpy at inlet.
Parameters
----------
c : tespy.connections.connection.Connection
Connection to perform initialisation on.
key : str
Fluid property to retrieve.
Returns
-------
val : float
Starting value for pressure/enthalpy in SI units.
.. math::
val = \begin{cases}
10^5 & \text{key = 'p'}\\
2.9 \cdot 10^5 & \text{key = 'h'}
\end{cases}
"""
if key == 'p':
return 1e5
elif key == 'h':
return 2.9e5
[docs]
def calc_parameters(self):
r"""Postprocessing parameter calculation."""
super().calc_parameters()
i = self.inl[0]
o = self.outl[0]
self.eta_s.val = (
isentropic(
i.p.val_SI,
i.h.val_SI,
o.p.val_SI,
i.fluid_data,
i.mixing_rule,
T0=None
) - self.inl[0].h.val_SI
) / (o.h.val_SI - i.h.val_SI)
[docs]
def exergy_balance(self, T0):
r"""
Calculate exergy balance of a pump.
Parameters
----------
T0 : float
Ambient temperature T0 / K.
Note
----
.. math::
\dot{E}_\mathrm{P} =
\begin{cases}
\dot{E}_\mathrm{out}^\mathrm{PH} - \dot{E}_\mathrm{in}^\mathrm{PH}
& T_\mathrm{in}, T_\mathrm{out} \geq T_0\\
\dot{E}_\mathrm{out}^\mathrm{T} + \dot{E}_\mathrm{out}^\mathrm{M} -
\dot{E}_\mathrm{in}^\mathrm{M}
& T_\mathrm{out} > T_0 \leq T_\mathrm{in}\\
\dot{E}_\mathrm{out}^\mathrm{M} - \dot{E}_\mathrm{in}^\mathrm{M}
& T_0 \geq T_\mathrm{in}, T_\mathrm{out}\\
\end{cases}
\dot{E}_\mathrm{F} =
\begin{cases}
P & T_\mathrm{in}, T_\mathrm{out} \geq T_0\\
P + \dot{E}_\mathrm{in}^\mathrm{T}
& T_\mathrm{out} > T_0 \leq T_\mathrm{in}\\
P + \dot{E}_\mathrm{in}^\mathrm{T} -\dot{E}_\mathrm{out}^\mathrm{T}
& T_0 \geq T_\mathrm{in}, T_\mathrm{out}\\
\end{cases}
\dot{E}_\mathrm{bus} = P
"""
if self.inl[0].T.val_SI >= T0 and self.outl[0].T.val_SI >= T0:
self.E_P = self.outl[0].Ex_physical - self.inl[0].Ex_physical
self.E_F = self.P.val
elif self.inl[0].T.val_SI <= T0 and self.outl[0].T.val_SI > T0:
self.E_P = self.outl[0].Ex_therm + (
self.outl[0].Ex_mech - self.inl[0].Ex_mech)
self.E_F = self.P.val + self.inl[0].Ex_therm
elif self.inl[0].T.val_SI <= T0 and self.outl[0].T.val_SI <= T0:
self.E_P = self.outl[0].Ex_mech - self.inl[0].Ex_mech
self.E_F = self.P.val + (
self.inl[0].Ex_therm - self.outl[0].Ex_therm)
else:
msg = ('Exergy balance of a pump, where outlet temperature is '
'smaller than inlet temperature is not implmented.')
logger.warning(msg)
self.E_P = np.nan
self.E_F = np.nan
self.E_bus = {
"chemical": 0, "physical": 0, "massless": self.P.val
}
self.E_D = self.E_F - self.E_P
self.epsilon = self._calc_epsilon()