Rankine Cycle#
Figure: Topology of the rankine cycle#
Figure: Topology of the rankine cycle#
Download the full script here:
rankine.py
Setting up the Cycle#
We will model the cycle including the cooling water of the condenser. For this
start with the Network
set up we already know.
from tespy.networks import Network
# create a network object with R134a as fluid
my_plant = Network()
my_plant.set_attr(T_unit='C', p_unit='bar', h_unit='kJ / kg')
Following, we create the components and connect them. The Condenser
has
a hot side inlet and outlet as well as a cold side inlet and outlet. The hot
side is indicated by using the index 1 for the inlet and outlet in1
and
out1
, the cold side uses the index 2 (in2
and out2
).
Again, for the closed thermodynamic cycle we have to insert a cycle closer. The
cooling water inlet and the cooling water outlet of the condenser are directly
connected to a Source
and a Sink
respectively.
from tespy.components import (
CycleCloser, Pump, Condenser, Turbine, SimpleHeatExchanger, Source, Sink
)
cc = CycleCloser('cycle closer')
sg = SimpleHeatExchanger('steam generator')
mc = Condenser('main condenser')
tu = Turbine('steam turbine')
fp = Pump('feed pump')
cwso = Source('cooling water source')
cwsi = Sink('cooling water sink')
from tespy.connections import Connection
c1 = Connection(cc, 'out1', tu, 'in1', label='1')
c2 = Connection(tu, 'out1', mc, 'in1', label='2')
c3 = Connection(mc, 'out1', fp, 'in1', label='3')
c4 = Connection(fp, 'out1', sg, 'in1', label='4')
c0 = Connection(sg, 'out1', cc, 'in1', label='0')
my_plant.add_conns(c1, c2, c3, c4, c0)
c11 = Connection(cwso, 'out1', mc, 'in2', label='11')
c12 = Connection(mc, 'out2', cwsi, 'in1', label='12')
my_plant.add_conns(c11, c12)
For the parameters, we predefine the pressure losses in the heat exchangers.
For the condenser, the hot side pressure losses are neglected pr1=1
,
for the cooling water side we assume pressure loss of 2 % pr2=0.98
. The
steam generator inflicts a pressure loss of 10 %.
The turbine and feed pump will have the isentropic efficiency specified. For the connection parameters, the fluid has to be defined in both the main cycle and the cooling water system. Furthermore, the live steam temperature, pressure and mass flow are set. Lastly, we set the condensation pressure level and the feed and return flow temperature of the cooling water as well as its feed pressure.
mc.set_attr(pr1=1, pr2=0.98)
sg.set_attr(pr=0.9)
tu.set_attr(eta_s=0.9)
fp.set_attr(eta_s=0.75)
c11.set_attr(T=20, p=1.2, fluid={'water': 1})
c12.set_attr(T=30)
c1.set_attr(T=600, p=150, m=10, fluid={'water': 1})
c2.set_attr(p=0.1)
my_plant.solve(mode='design')
my_plant.print_results()
After running the simulation, for example, we can observe the temperature
differences at the condenser. Instead of directly setting a pressure value for
condensation, we could also set the upper terminal temperature difference
ttd_u
instead. It is defined as the condensation temperature to cooling
water return flow temperature.
Tip
You will find the documentation of each equation of the components in the
respective seciton of the API documentation. For example, the condenser
tespy.components.heat_exchangers.condenser.Condenser
.
mc.set_attr(ttd_u=4)
c2.set_attr(p=None)
my_plant.solve(mode='design')
my_plant.print_results()
After rerunning, we will see that the condensation temperature and pressure are both automatically calculated by the specified terminal temperature value.
Assess Electrical Power#
To assess the electrical power output we want to consider the power generated
by the turbine as well as the power required to drive the feed pump. It is
possible to include both of the component’s power values in a single electrical
Bus
. We can do this by importing the
tespy.connections.bus.Bus
class, creating an instance and adding
both components to the bus.
from tespy.connections import Bus
powergen = Bus("electrical power output")
powergen.add_comps(
{"comp": tu, "char": 0.97, "base": "component"},
{"comp": fp, "char": 0.97, "base": "bus"},
)
my_plant.add_busses(powergen)
my_plant.solve(mode='design')
my_plant.print_results()
Note
The Bus
can take components which either produce or consume energy.
Specifying 'base': 'bus'
means, that the efficiency value is
referenced to the electrical power
while specifying 'base': 'component'
(default) takes the component’s
power as base value.
The results for the bus are printed separately. Observe, that the steam
turbine’s electrical power production (bus value
) is lower than the
component value
, while it is inverted for the feed pump.
You can also set the total desired power production of the system, for example replacing the mass flow specification at connection 1:
powergen.set_attr(P=-10e6)
c1.set_attr(m=None)
my_plant.solve(mode='design')
my_plant.print_results()
Analyze Efficiency and Powergeneration#
In this section, we will analyze the power production and the efficiency of the cycle, given constant steam mass flow and with varying values for the
live steam pressure,
live steam temperature and
cooling water temperature level.
To do that, we are using a very similar setup as has been used in the
heat pump tutorial. For the feed water
temperature level we want to set the change in temperature at the condenser
to a constant value. Also, we have to unset the power generation specification
again and use a constant mass flow instead. With iterinfo=False
we
can disable the printout of the convergence history.
Click to expand to code section
my_plant.set_attr(iterinfo=False)
c1.set_attr(m=20)
powergen.set_attr(P=None)
import matplotlib.pyplot as plt
import numpy as np
# make text reasonably sized
plt.rc('font', **{'size': 18})
data = {
'T_livesteam': np.linspace(450, 750, 7),
'T_cooling': np.linspace(15, 45, 7),
'p_livesteam': np.linspace(75, 225, 7)
}
eta = {
'T_livesteam': [],
'T_cooling': [],
'p_livesteam': []
}
power = {
'T_livesteam': [],
'T_cooling': [],
'p_livesteam': []
}
for T in data['T_livesteam']:
c1.set_attr(T=T)
my_plant.solve('design')
eta['T_livesteam'] += [abs(powergen.P.val) / sg.Q.val * 100]
power['T_livesteam'] += [abs(powergen.P.val) / 1e6]
# reset to base temperature
c1.set_attr(T=600)
for T in data['T_cooling']:
c12.set_attr(T=T)
c11.set_attr(T=T - 10)
my_plant.solve('design')
eta['T_cooling'] += [abs(powergen.P.val) / sg.Q.val * 100]
power['T_cooling'] += [abs(powergen.P.val) / 1e6]
# reset to base temperature
c12.set_attr(T=30)
c11.set_attr(T=20)
for p in data['p_livesteam']:
c1.set_attr(p=p)
my_plant.solve('design')
eta['p_livesteam'] += [abs(powergen.P.val) / sg.Q.val * 100]
power['p_livesteam'] += [abs(powergen.P.val) / 1e6]
# reset to base pressure
c1.set_attr(p=150)
fig, ax = plt.subplots(2, 3, figsize=(16, 8), sharex='col', sharey='row')
ax = ax.flatten()
[a.grid() for a in ax]
i = 0
for key in data:
ax[i].scatter(data[key], eta[key], s=100, color="#1f567d")
ax[i + 3].scatter(data[key], power[key], s=100, color="#18a999")
i += 1
ax[0].set_ylabel('Efficiency in %')
ax[3].set_ylabel('Power in MW')
ax[3].set_xlabel('Live steam temperature in °C')
ax[4].set_xlabel('Feed water temperature in °C')
ax[5].set_xlabel('Live steam pressure in bar')
plt.tight_layout()
fig.savefig('rankine_parametric.svg')
plt.close()
Figure: Parametric analysis of the efficiency and power output#
Figure: Parametric analysis of the efficiency and power output#
Part load Simulation#
In the part load simulation part, we are starting with a specific design of the plant and calculate the part load performance with some assumptions on the component’s individual behavior. The table below summarizes the assumptions, which we will keep as simple as possible at this moment. For more insights have a look at the step by step heat pump tutorial or at the Network documentation.
Component |
Assumptions |
Settings |
---|---|---|
Turbine |
cone law applies |
unset inlet pressure and apply cone law |
Condenser |
constant heat transfer coefficient |
unset terminal temperature difference and set heat transfer coefficient |
Cooling water |
constant volumetric flow |
unset return temperature value and set volumetric flow |
With these specifications, the following physics are applied to the model:
Due to the constant volumetric flow of water, the temperature of the cooling water returning from the condenser will react to the total heat transferred in the condensation: Increased heat transfer means increasing temperature, decreased heat transfer means decreased temperature.
The constant heat transfer coefficient of the condenser will calculate the condensation temperature (and therefore pressure) based on the temperature regime in the cooling water side:
Increase in temperature for the cooling water leads to increased condensation temperature (at constant heat transfer).
Increase in heat transfer means increase in necessary temperature difference at the condenser (at constant cooling water inlet temperature).
The cone law is a mathematical model to predict the pressure at the turbine’s inlet based on the deviation from the design conditions. Generally, increased mass flow leads to higher inlet pressure (at constant inlet temperature and constant outlet pressure). However, this equation is more complex, since a lot more parameters are involved compared to the other equations applied.
In order to apply these specifications, we can use the design
and
offdesign
keywords. The keyword design
unsets the specified
data in the list in an offdesign calculation. The keyword offdesign
automatically sets the respective parameter for the offdesign calculation. In
case the specification refers to a value, the value is taken from the design
mode calculation. In the example, the main condenser’s kA value is calculated
in the design simulation and its value will be kept constant through the
offdesign simulations.
mc.set_attr(design=["ttd_u"], offdesign=["kA"])
c11.set_attr(offdesign=["v"])
c12.set_attr(design=["T"])
c1.set_attr(design=["p"])
tu.set_attr(offdesign=["cone"])
We have to save the design state of the network and run the solve
method with the design_path
specified.
my_plant.solve("design")
my_plant.save("rankine_design")
Finally, we can alter the mass flow from its design value of 20 kg/s to only 50 % of its value. In this example, we calculate the efficiency and plot it.
partload_efficiency = []
partload_m_range = np.linspace(20, 10, 11)
for m in partload_m_range:
c1.set_attr(m=m)
my_plant.solve("offdesign", design_path="rankine_design")
partload_efficiency += [abs(powergen.P.val) / sg.Q.val * 100]
fig, ax = plt.subplots(1, figsize=(16, 8))
ax.grid()
ax.scatter(partload_m_range, partload_efficiency, s=100, color="#1f567d")
ax.set_xlabel("Mass flow in kg/s")
ax.set_ylabel("Plant electrical efficiency in %")
plt.tight_layout()
fig.savefig('rankine_partload.svg')
plt.close()
Figure: Part load electric efficiency of the Rankine cycle#
Figure: Part load electric efficiency of the Rankine cycle#