Source code for tespy.tools.data_containers

# -*- coding: utf-8

"""Module for data container classes.

The DataContainer class and its subclasses are used to store component or
connection properties.


This file is part of project TESPy (github.com/oemof/tespy). It's copyrighted
by the contributors recorded in the version control history of the file,
available from its original location tespy/tools/data_containers.py

SPDX-License-Identifier: MIT
"""
import numpy as np

from tespy.tools import logger


[docs] class DataContainer: """ The DataContainer is parent class for all data containers. Parameters ---------- **kwargs : See the class documentation of desired DataContainer for available keywords. Note ---- The initialisation method (:code:`__init__`), setter method (:code:`set_attr`) and getter method (:code:`get_attr`) are used for instances of class DataContainer and its children. TESPy uses different :code:`DataContainer` classes for specific objectives: - component characteristics :py:class:`tespy.tools.data_containers.ComponentCharacteristics` - component characteristic maps :py:class:`tespy.tools.data_containers.ComponentCharacteristicMaps` - component properties :py:class:`tespy.tools.data_containers.ComponentProperties` - grouped component properites :py:class:`tespy.tools.data_containers.GroupedComponentProperties` - fluid composition :py:class:`tespy.tools.data_containers.FluidComposition` - fluid properties :py:class:`tespy.tools.data_containers.FluidProperties` Grouped component properties are used, if more than one component property has to be specified in order to apply one equation, e.g. pressure drop in pipes by specified length, diameter and roughness. If you specify all three of these properties, the DataContainer for the group will be created automatically! For the full list of available parameters for each data container, see its documentation. Example ------- The examples below show the different (sub-)classes of DataContainers available. >>> from tespy.tools.data_containers import ( ... ComponentCharacteristics, ComponentCharacteristicMaps, ... ComponentProperties, FluidComposition, GroupedComponentProperties, ... FluidProperties, SimpleDataContainer) >>> from tespy.components import Pipe >>> type(ComponentCharacteristicMaps(is_set=True)) <class 'tespy.tools.data_containers.ComponentCharacteristicMaps'> >>> type(ComponentCharacteristics(is_set=True, param='m')) <class 'tespy.tools.data_containers.ComponentCharacteristics'> >>> type(ComponentProperties(val=100, is_set=True, is_var=True, ... max_val=1000, min_val=1)) <class 'tespy.tools.data_containers.ComponentProperties'> >>> pi = Pipe('testpipe', L=100, D=0.5, ks=5e-5) >>> type(GroupedComponentProperties( ... is_set=True, elements=["L", "D", "ks"] ... )) <class 'tespy.tools.data_containers.GroupedComponentProperties'> >>> type(FluidComposition( ... val={'CO2': 0.1, 'H2O': 0.11, 'N2': 0.75, 'O2': 0.03}, is_set={'O2'} ... )) <class 'tespy.tools.data_containers.FluidComposition'> >>> type(FluidProperties(val=5, val_SI=500000, is_set=True, unit='bar')) <class 'tespy.tools.data_containers.FluidProperties'> >>> type(SimpleDataContainer(val=5, is_set=False)) <class 'tespy.tools.data_containers.SimpleDataContainer'> """ def __init__(self, **kwargs): var = self.attr() # default values for key in var.keys(): self.__dict__.update({key: var[key]}) self.set_attr(**kwargs)
[docs] def set_attr(self, **kwargs): """ Sets, resets or unsets attributes of a DataContainer type object. Parameters ---------- **kwargs : See the class documentation of desired DataContainer for available keywords. """ var = self.attr() # specify values for key in kwargs: if key in var: self.__dict__.update({key: kwargs[key]}) else: msg = ( f"Datacontainer of type {self.__class__.__name__} has no " f"attribute \"{key}\"." ) logger.error(msg) raise KeyError(msg)
[docs] def get_attr(self, key): """ Get the value of a DataContainer's attribute. Parameters ---------- key : str The attribute you want to retrieve. Returns ------- out : Specified attribute. """ if key in self.__dict__: return self.__dict__[key] else: msg = ( f"Datacontainer of type {self.__class__.__name__} has no " f"attribute \"{key}\"." ) logger.error(msg) raise KeyError(msg)
[docs] @staticmethod def attr(): """ Return the available attributes for a DataContainer type object. Returns ------- out : dict Dictionary of available attributes (dictionary keys) with default values. """ return {}
def _serialize(self): return {}
[docs] class ComponentCharacteristics(DataContainer): """ Data container for component characteristics. Parameters ---------- func : tespy.components.characteristics.characteristics Function to be applied for this characteristics, default: None. is_set : boolean Should this equation be applied?, default: is_set=False. param : str Which parameter should be applied as the x value? default: method='default'. """
[docs] @staticmethod def attr(): """ Return the available attributes for a ComponentCharacteristics type object. Returns ------- out : dict Dictionary of available attributes (dictionary keys) with default values. """ return { 'char_func': None, 'is_set': False, 'param': None, 'func_params': {}, 'func': None, 'deriv': None, 'latex': None, 'char_params': {'type': 'rel', 'inconn': 0, 'outconn': 0}, 'num_eq': 0 }
def _serialize(self): export = {} if self.char_func is not None: export.update({"char_func": self.char_func._serialize()}) for k in ["is_set", "param", "char_params"]: export.update({k: self.get_attr(k)}) return export
[docs] class ComponentCharacteristicMaps(DataContainer): """ Data container for characteristic maps. Parameters ---------- func : tespy.components.characteristics.characteristics Function to be applied for this characteristic map, default: None. is_set : boolean Should this equation be applied?, default: is_set=False. param : str Which parameter should be applied as the x value? default: method='default'. """
[docs] @staticmethod def attr(): """ Return the available attributes for a ComponentCharacteristicMaps type object. Returns ------- out : dict Dictionary of available attributes (dictionary keys) with default values. """ return { 'char_func': None, 'is_set': False, 'param': None, 'latex': None, 'func_params': {}, 'func': None, 'deriv': None, 'num_eq': 0 }
def _serialize(self): export = {} if self.char_func is not None: export.update({"char_func": self.char_func._serialize()}) for k in ["is_set", "param"]: export.update({k: self.get_attr(k)}) return export
[docs] class ComponentProperties(DataContainer): """ Data container for component properties. Parameters ---------- val : float Value for this component attribute, default: val=1. val_SI : float Value in SI_unit (available for temperatures only, unit transformation according to network's temperature unit), default: val_SI=0. is_set : boolean Has the value for this attribute been set?, default: is_set=False. is_var : boolean Is this attribute part of the system variables?, default: is_var=False. d : float Interval width for numerical calculation of partial derivative towards this attribute, it is part of the system variables, default d=1e-4. min_val : float Minimum value for this attribute, used if attribute is part of the system variables, default: min_val=1.1e-4. max_val : float Maximum value for this attribute, used if attribute is part of the system variables, default: max_val=1e12. """
[docs] @staticmethod def attr(): """ Return the available attributes for a ComponentProperties type object. Returns ------- out : dict Dictionary of available attributes (dictionary keys) with default values. """ return { 'val': 1, 'val_SI': 0, 'is_set': False, 'd': 1e-4, 'min_val': -1e12, 'max_val': 1e12, 'is_var': False, 'design': np.nan, 'is_result': False, 'num_eq': 0, 'func_params': {}, 'func': None, 'deriv': None, 'latex': None }
def _serialize(self): keys = self._serializable_keys() return {k: self.get_attr(k) for k in keys} @staticmethod def _serializable_keys(): return [ "val", "val_SI", "is_set", "d", "min_val", "max_val", "is_var", ]
[docs] class FluidComposition(DataContainer): """ Data container for fluid composition. Parameters ---------- val : dict Mass fractions of the fluids in a mixture, default: val={}. Pattern for dictionary: keys are fluid name, values are mass fractions. val0 : dict Starting values for mass fractions of the fluids in a mixture, default: val0={}. Pattern for dictionary: keys are fluid name, values are mass fractions. is_set : dict Which fluid mass fractions have been set, default is_set={}. Pattern for dictionary: keys are fluid name, values are True or False. balance : boolean Should the fluid balance equation be applied for this mixture? default: False. """
[docs] @staticmethod def attr(): """ Return the available attributes for a FluidComposition type object. Returns ------- out : dict Dictionary of available attributes (dictionary keys) with default values. """ return { 'val': dict(), 'val0': dict(), 'is_set': set(), 'design': dict(), 'wrapper': dict(), 'back_end': dict(), 'engine': dict(), "is_var": set(), "J_col": dict(), }
def _serialize(self): export = {"val": self.val} export["is_set"] = list(self.is_set) export["engine"] = {k: e.__name__ for k, e in self.engine.items()} export["back_end"] = {k: b for k, b in self.back_end.items()} return export
[docs] class GroupedComponentProperties(DataContainer): """ Data container for grouped component parameters. Parameters ---------- is_set : boolean Should the equation for this parameter group be applied? default: is_set=False. method : str Which calculation method for this parameter group should be used? default: method='default'. elements : list Which component properties are part of this component group? default elements=[]. """
[docs] @staticmethod def attr(): """ Return the available attributes for a GroupedComponentProperties type object. Returns ------- out : dict Dictionary of available attributes (dictionary keys) with default values. """ return { 'is_set': False, 'elements': [], 'func': None, 'deriv': None, 'num_eq': 0, 'latex': None, 'func_params': {} }
[docs] class GroupedComponentCharacteristics(DataContainer): """ Data container for grouped component characteristics. Parameters ---------- is_set : boolean Should the equation for this parameter group be applied? default: is_set=False. elements : list Which component properties are part of this component group? default elements=[]. """
[docs] @staticmethod def attr(): """ Return the available attributes for a GroupedComponentCharacteristics type object. Returns ------- out : dict Dictionary of available attributes (dictionary keys) with default values. """ return { 'is_set': False, 'elements': [], 'func': None, 'deriv': None, 'num_eq': 0, 'latex': None, 'func_params': {} }
[docs] class FluidProperties(DataContainer): """ Data container for fluid properties. Parameters ---------- val : float Value in user specified unit (or network unit) if unit is unspecified, default: val=np.nan. val0 : float Starting value in user specified unit (or network unit) if unit is unspecified, default: val0=np.nan. val_SI : float Value in SI_unit, default: val_SI=0. is_set : boolean Has the value for this property been set? default: is_set=False. unit : str Unit for this property, default: ref=None. unit : boolean Has the unit for this property been specified manually by the user? default: unit_set=False. """
[docs] @staticmethod def attr(): r""" Return the available attributes for a FluidProperties type object. Returns ------- out : dict Dictionary of available attributes (dictionary keys) with default values. """ return { 'design': np.nan, 'val': np.nan, 'val0': np.nan, 'val_SI': 0, 'unit': None, 'is_set': False, "is_var": False, "func": None, "deriv": None, "constant_deriv": False, "latex": None, "num_eq": 0, "J_col": None, "func_params": {}, "_solved": False }
def _serialize(self): keys = ["val", "val0", "val_SI", "is_set", "unit"] return {k: self.get_attr(k) for k in keys}
[docs] class ReferencedFluidProperties(DataContainer):
[docs] @staticmethod def attr(): r""" Return the available attributes for a FluidProperties type object. Returns ------- out : dict Dictionary of available attributes (dictionary keys) with default values. """ return { "ref": None, "is_set": False, "unit": None, "func": None, "deriv": None, "num_eq": 0, "func_params": {}, "_solved": False }
def _serialize(self): if self.ref is not None: keys = ["is_set", "unit"] export = {k: self.get_attr(k) for k in keys} export["conn"] = self.ref.obj.label export["factor"] = self.ref.factor export["delta"] = self.ref.delta return export else: return {}
[docs] class SimpleDataContainer(DataContainer): """ Simple data container without data type restrictions to val field. Parameters ---------- val : no specific datatype Value for the property, no predefined datatype. is_set : boolean Has the value for this property been set? default: is_set=False. """
[docs] @staticmethod def attr(): r""" Return the available attributes for a SimpleDataContainer type object. Returns ------- out : dict Dictionary of available attributes (dictionary keys) with default values. """ return { "val": np.nan, "is_set": False, "func_params": {}, "func": None, "deriv": None, "latex": None, "num_eq": 0, "_solved": False }
def _serialize(self): return {"val": self.val, "is_set": self.is_set}