Source code for tespy.tools.document_models

# -*- coding: utf-8

"""Module for helper functions used by several other modules.

This file is part of project TESPy (github.com/oemof/tespy). It's copyrighted
by the contributors recorded in the version control history of the file,
available from its original location tespy/tools/document_models.py

SPDX-License-Identifier: MIT
"""
import os
import sys
from datetime import date

import CoolProp as CP
import numpy as np
import pandas as pd

from tespy.tools import helpers as hlp
from tespy.tools.data_containers import ComponentCharacteristicMaps as dc_cm
from tespy.tools.data_containers import ComponentCharacteristics as dc_cc
from tespy.tools.data_containers import ComponentProperties as dc_cp
from tespy.tools.global_vars import fluid_property_data as fpd
from tespy.tools.logger import check_git_branch
from tespy.tools.logger import check_version


[docs] def document_model(nw, path='report', filename='report.tex', fmt={}): """Generate LaTeX documentation for a TESPy model. - The documentation is stored at path/filename - Generated figures are stored at path/figures/ Parameters ---------- nw : tespy.networks.network.Network Network instance to document. path : str Folder for the documentation, default :code:`report`. filename : str Desired filename for the LaTeX document, default :code:`report.tex`. fmt : dict Dictionary for formatting the report, for sample see respective section in online documentation. """ # prepare filestructure fig_path = os.path.join(path, "figures") # create paths, if non existent os.makedirs(fig_path, exist_ok=True) rpt = set_defaults(nw) rpt = hlp.merge_dicts(rpt, fmt) rpt['path'] = path latex = document_software_info(rpt) latex += document_connections(nw, rpt) latex += document_ude(nw, rpt['path']) latex += document_components(nw, rpt) latex += document_busses(nw, rpt) if rpt['latex_body']: latex += r'\end{document}' with open(os.path.join(path, filename), 'w') as f: f.write(latex) f.close()
[docs] def set_defaults(nw): """ Set up defaults for report formatting. Parameters ---------- nw : tespy.networks.network.Network TESPy Network instance. Returns ------- rpt : dict Dictionary containting the default formatting data. """ rpt = { 'draft': True, 'latex_body': True, 'include_results': True, 'Bus': {'float_fmt': '{:,.2f}'}, 'Connection': { key: data['documentation'] for key, data in fpd.items()} } classes = [ nw.comps[nw.comps['comp_type'] == cp]['object'].iloc[0] for cp in nw.comps['comp_type'].unique() ] for c in classes: rpt[c.__class__.__name__] = {'params': []} if hasattr(c, "parameters"): rpt[c.__class__.__name__].update({ param: {'float_fmt': '{:,.2f}'} for param, data in c.parameters.items() if isinstance(data, dc_cp) }) rpt['Connection']['fluid'] = { 'float_fmt': '{:.3f}', 'include_results': True} rpt['Connection']['params'] = ['m', 'p', 'h', 'T', 's'] return rpt
[docs] def document_software_info(rpt): """Get software information. Parameters ---------- rpt : dict Formatting data for the report. Returns ------- latex : str LaTeX code for software information. """ latex = '' if rpt['latex_body']: latex += ( r'\documentclass[]{article}' + '\n' r'\usepackage{geometry}' + '\n' r'\geometry{a4paper, left=20mm, top=20mm,}' + '\n' r'\usepackage{graphicx}' + '\n' r'\usepackage{float}' + '\n' r'\usepackage{hyperref}' + '\n' r'\usepackage{booktabs}' + '\n' r'\usepackage{amsmath}' + '\n' r'\usepackage{units}' + '\n' r'\usepackage{cleveref}' + '\n\n' r'\usepackage{longtable}' + '\n\n' r'\newcommand{\iftab}{\fontshape{sl}\selectfont}' + '\n\n' r'\newcommand{\bftab}{\fontseries{b}\selectfont}' + '\n\n' r'\begin{document}' + '\n\n') latex += r'\section*{Software Information}' + '\n\n' if rpt['draft']: latex += r'\begin{itemize}' + '\n' latex += ( r'\item Please check, whether your inputs, the equations ' 'applied and the charactersitics are displayed correctly.\n') latex += ( r'\item You are welcome to send your feedback via ' r'\url{https://github.com/oemof/tespy/issues}.' + '\n') latex += r'\item \LaTeX packages required are:' + '\n' latex += r'\begin{itemize}' + '\n' latex += r'\item graphicx' + '\n' latex += r'\item float' + '\n' latex += r'\item hyperref' + '\n' latex += r'\item booktabs' + '\n' latex += r'\item amsmath' + '\n' latex += r'\item units' + '\n' latex += r'\item cleveref' + '\n' latex += r'\item longtable' + '\n' latex += r'\end{itemize}' + '\n' latex += ( 'Additionally, you will need to make the following ' 'definitions:\n') latex += r'\begin{itemize}' + '\n' latex += r'\item \textbackslash newcommand\{\textbackslash iftab\}' latex += r'\{\textbackslash fontshape\{sl\}\textbackslash selectfont\}' latex += '\n' latex += r'\item \textbackslash newcommand\{\textbackslash bftab\}' latex += r'\{\textbackslash fontseries\{b\}\textbackslash selectfont\}' latex += '\n' latex += r'\end{itemize}' + '\n' latex += ( r'\item To suppress these messages, call the model ' 'documentation with the keyword draft=False in the formatting ' 'dict.\n') latex += r'\end{itemize}' + '\n\n' latex += r'\begin{table}[H]' + '\n' latex += r'\begin{tabular}{ll}' + '\n' version = check_version().replace('_', r'\_') latex += r'\bftab General information&\\' + '\n' latex += r'& \\' + '\n' latex += 'TESPy Version:&' + version + r'\\' + '\n' try: git = check_git_branch().replace('_', r'\_') except FileNotFoundError: git = 'Installation from git not found' latex += 'Commit:&' + git + r'\\' + '\n' latex += 'CoolProp version:&' + CP.__version__ + r'\\' + '\n' latex += 'Python version:&' + sys.version + r'\\' + '\n' timestamp = date.today().strftime('%B %d, %Y') latex += 'Documentation generated:&' + timestamp + r'\\' + '\n' latex += r'& \\' + '\n' latex += r'\bftab Parameter highlighting&\\' + '\n' latex += r'& \\' + '\n' latex += r'Variable component parameters:& \iftab italic\\' + '\n' if rpt['include_results']: latex += r'Specified input parameter:& \bftab bold\\' + '\n' latex += r'Results of simulation:& normalfont \\' + '\n' latex += r'& \\' + '\n' latex += ( r'\multicolumn{2}{l}{\iftab Equations are displayed for input ' r'parameters only.}\\' + '\n') else: latex += r'Specified input parameter:& normalfont \\' + '\n' latex += r'\end{tabular}' + '\n' latex += r'\end{table}' + '\n' latex += r'\newpage' return latex
[docs] def document_connections(nw, rpt): """Document connection specifications. Parameters ---------- nw : tespy.networks.network.Network TESPy model. rpt : dict Formatting data for the report. Returns ------- latex : str LaTeX code for all connections. """ ref_data = {'m': [], 'p': [], 'h': [], 'T': []} cols = nw.results['Connection'].columns property_cols = [c for c in cols[~cols.isin(nw.all_fluids)] if "unit" not in c] property_data = nw.results['Connection'].copy().loc[:, property_cols] fluid_data = nw.results['Connection'].copy().loc[:, list(nw.all_fluids)] specs = nw.specifications['Connection'].copy() if not rpt['include_results']: property_data = property_data[specs] fluid_data = fluid_data[specs] # it is possible to exclude fluid results elif not rpt['Connection']['fluid']['include_results']: fluid_data = fluid_data[specs] ref_spec = nw.specifications['Ref'] # get some Connection object for equation generator c = nw.get_conn(specs.index[0]) for c in nw.get_conn(ref_spec.any(axis=1).index): for param in ref_spec.columns: if c.get_attr(param).is_set: ref_dict = {'label': c.label.replace('_', r'\_')} ref_dict.update( {'reference': c.get_attr(param).val.obj.label.replace('_', r'\_'), 'factor in -': c.get_attr(param).val.factor, 'delta in ' + hlp.latex_unit( nw.get_attr(param.split("_ref")[0] + '_unit')): c.get_attr(param).val.delta}) ref_data[param.split("_ref")[0]] += [ref_dict] latex = r'\section{Connections in ' + nw.mode + ' mode}' + '\n\n' # if list is empty, all parameters will be included if len(rpt['Connection']['params']) > 0: for col in property_data.columns: if col not in rpt['Connection']['params'] and not any(specs[col]): property_data[col] = np.nan df = data_to_df(property_data) if len(df) > 0: eqs = df[specs].dropna(how='all').dropna(how='all', axis=1).columns latex += document_connection_params(nw, df, specs, eqs, c, rpt) df = data_to_df(fluid_data) if len(df) > 0: eqs = df[specs].dropna(how='all').dropna(how='all', axis=1).columns latex += document_connection_fluids(df, specs, eqs, c, rpt) for property, data in ref_data.items(): df = data_to_df(data) if len(df) > 0: latex += document_connection_ref(df, property, c) return latex
[docs] def document_connection_params(nw, df, specs, eqs, c, rpt): """Document parameter specification of connections. Parameters ---------- nw : tespy.networks.network.Network Network object for unit information. df : pandas.core.frame.DataFrame DataFrame containing the connection parameter data. specs : pandas.core.frame.DataFrame DataFrame containing information on model input specifications. eqs : list List of parameters to generate equations for. c : tespy.connections.connection.Connection Connection object, required for LaTeX equation generation. rpt : dict Formatting data for the report. Returns ------- latex : str LaTeX code for all connections. """ if rpt['include_results']: label = 'Connection specifications and results' else: label = 'Specified connection parameters' latex = r'\subsection{' + label + '}' + '\n\n' df_out = df.astype(str) equations = '' for col in df.columns: unit = col + '_unit' if col == 'Td_bp': unit = 'T_unit' col_header = ( col.replace('_', r'\_') + ' in ' + hlp.latex_unit(nw.get_attr(unit))) if col in eqs: col_header += ( r' (\ref{eq:Connection_' + fpd[col]['text'] + '})') equations += generate_latex_eq( c, fpd[col]['latex_eq'], fpd[col]['text']) + '\n\n' for row in df.index: fmt = rpt['Connection'][col]['float_fmt'] if specs.loc[row, col] and rpt['include_results']: df_out.loc[row, col] = r'\bftab ' + fmt.format(df.loc[row, col]) else: df_out.loc[row, col] = fmt.format(df.loc[row, col]) df_out.rename(columns={col: col_header}, inplace=True) num_col = len(df_out.columns) latex += create_latex_table(df_out, label, col_fmt='l' + num_col * 'r') latex += r'\subsection{Equations applied}' + '\n\n' latex += equations return latex
[docs] def document_connection_fluids(df, specs, eqs, c, rpt): """Document fluid specifications of connections. Parameters ---------- df : pandas.core.frame.DataFrame DataFrame containing the connection fluid data. specs : pandas.core.frame.DataFrame DataFrame containing information on model input specifications. eqs : list List of parameters to generate equations for. c : tespy.connections.connection.Connection Connection object, required for LaTeX equation generation. rpt : dict Formatting data for the report. Returns ------- latex : str LaTeX code for all connections. """ label = 'Specified fluids' latex = r'\subsection{' + label + '}' + '\n\n' df_out = df.astype(str) equations = '' fmt = rpt['Connection']['fluid']['float_fmt'] for col in eqs: if col == 'balance': eq = r'0=1-\sum x_{fl}\;\forall fl\in\text{network fluids}' equations += generate_latex_eq(c, eq, col) + '\n\n' else: eq = ( r'0 = x_\mathrm{' + col + r'} - x_\mathrm{' + col + ',spec}') equations += generate_latex_eq(c, eq, col) + '\n\n' for row in df.index: if specs.loc[row, col] and rpt['include_results']: df_out.loc[row, col] = r'\bftab ' + fmt.format( df.loc[row, col] ) else: df_out.loc[row, col] = fmt.format(df.loc[row, col]) col_header = ( col.replace('_', r'\_') + ' (' r'\ref{eq:Connection_' + col + '})') df_out.rename(columns={col: col_header}, inplace=True) num_col = len(df_out.columns) latex += create_latex_table(df_out, label, col_fmt='l' + num_col * 'r') latex += r'\subsection{Equations applied}' + '\n\n' latex += equations return latex
[docs] def document_connection_ref(df, property, c): """Document referenced connection properties Parameters ---------- df : pandas.core.frame.DataFrame DataFrame containing the referenced connection data. property : str Short name of specified property (:code:`'m', 'p', ...`). c : tespy.connections.connection.Connection Connection object, required for LaTeX equation generation. Returns ------- latex : str LaTeX code for all connections. """ label = fpd[property]['text'] caption = 'Specified reference values for ' + label latex = r'\subsection{Referenced ' + label + '}' + '\n\n' latex += create_latex_table(df, caption, col_fmt='llrr') latex += r'\subsection{Equation applied}' + '\n\n' eq = ( r'0 = \text{value} - \text{value}_\mathrm{ref} ' r'\cdot \mathrm{factor} + \text{delta}') latex += generate_latex_eq(c, eq, 'ref') + '\n\n' return latex
[docs] def document_ude(nw, path): """Document UserDefinedEquation specifications. Parameters ---------- nw : tespy.networks.network.Network TESPy model. path : str Folder for the documentation, default :code:`report`. Returns ------- latex : str LaTeX code for all UserDefinedEquations. """ if len(nw.user_defined_eq) == 0: return '' latex = ( r'\section{User defined equations in ' + nw.mode + ' mode}' + '\n\n') for label, ude_data in nw.user_defined_eq.items(): eq_label = ( r'(\ref{eq:UserDefinedEquation_' + label.replace(' ', '_') + '})') latex += ( r'\subsection{Equation for ``' + label + '\'\'' + eq_label + r'}' + '\n\n') latex += generate_latex_eq( ude_data, ude_data.latex['equation'], label.replace(' ', '_')) figures = [] i = 1 for line in ude_data.latex['lines']: local_path = ( 'figures/UDE_CharLine_' + ude_data.label.replace(' ', '_') + '_' + str(i) + '.pdf') figname = path + local_path label = 'UDE_CharLine_' + ude_data.label + '_' + str(i) xlabel = '$X$' ylabel = r'$f\left(X\right)$' line.plot(figname, '', xlabel, ylabel) figures += [create_latex_figure( local_path, 'CharLine ' + str(i) + ' of ' + ude_data.label + ' ' + eq_label, label)] i += 1 i = 1 for map in ude_data.latex['maps']: local_path = ( 'figures/UDE_CharMap_' + ude_data.label.replace(' ', '_') + '_' + str(i) + '.pdf') figname = path + local_path label = 'UDE_CharLine_' + ude_data.label + '_' + str(i) xlabel = '$Y$' ylabel = r'$f\left(Y,\vec{Y},\vec{Z}\right)$' map.plot(figname, '', xlabel, ylabel) figures += [create_latex_figure( local_path, 'CharMap ' + str(i) + ' of ' + ude_data.label + ' ' + eq_label, label)] i += 1 latex += place_figures(figures) return latex
[docs] def document_components(nw, rpt): """Document component specifications. Parameters ---------- nw : tespy.networks.network.Network TESPy model. rpt : dict Formatting data for the report. Returns ------- latex : str LaTeX code for all components. """ latex = '' for cp in nw.comps['comp_type'].unique(): component_list = nw.comps[nw.comps['comp_type'] == cp]['object'] latex += get_component_mandatory_constraints( cp, component_list, rpt['path']) latex += get_component_specifications(nw, cp, rpt) if latex != '': latex = ( r'\section{Components in ' + nw.mode + ' mode}' + '\n\n' + latex) return latex
[docs] def get_component_mandatory_constraints(cp, component_list, path): """Get latex code for mandatory constraints of component type cp. Parameters ---------- cp : str Classname of the current class. component_list : pandas.core.frame.DataFrame DataFrame of the components of Class cp. path : str Folder for the documentation, default :code:`report`. Returns ------- latex : str LaTeX code for mandatory component constraints. """ latex = '' num_mandatory_eq = 0 mandatory_eq = '' figures = [] for label, data in component_list.iloc[0].constraints.items(): if 'char' in data: for component in component_list: local_path = ( 'figures/' + cp + '_CharLine_' + label + '_' + component.label.replace(' ', '_') + '.pdf') figname = path + local_path xlabel = r'$X$' ylabel = r'$f\left(X\right)$' component.get_attr(data['char']).char_func.plot( figname, '', xlabel, ylabel) figures += [create_latex_figure( local_path, 'Characteristics of ' + component.label.replace('_', r'\_') + r' (eq. \ref{eq:' + cp + '_' + label + '})', 'CharLine_' + label + '_' + component.label)] mandatory_eq += data['latex'](label) + '\n\n' num_mandatory_eq += 1 if num_mandatory_eq > 0: latex += r'\subsection{Components of type ' + cp + '}\n\n' latex += r'\subsubsection{Mandatory constraints}' + '\n\n' latex += mandatory_eq latex += place_figures(figures) return latex
[docs] def get_component_specifications(nw, cp, rpt): """Get latex code for component specifications of component type cp. Parameters ---------- cp : str Classname of the current class. component_list : pandas.core.frame.DataFrame DataFrame of the components of Class cp. rpt : dict Formatting data for the report. Returns ------- latex : str LaTeX code for component parameter specification. """ figures = [] col_headers = {} equations = '' result = nw.results[cp].copy() specs = nw.specifications[cp] if not rpt['include_results']: result = result[specs['properties'] | specs['variables']] elif len(rpt[cp]['params']) > 0: for col in result.columns: if (col not in rpt[cp]['params'] and not any(specs['properties'][col]) and not any(specs['variables'][col])): result[col] = np.nan result_out = result.dropna(how='all', axis=1).astype(str) cols = result.columns.tolist() for col in cols: fmt = rpt[cp][col]['float_fmt'] for row in result.index: if specs['variables'].loc[row, col]: result_out.loc[row, col] = ( r'\iftab ' + fmt.format(result.loc[row, col]) ) elif specs['properties'].loc[row, col] and rpt['include_results']: result_out.loc[row, col] = ( r'\bftab ' + fmt.format(result.loc[row, col]) ) else: result_out.loc[row, col] = fmt.format(result.loc[row, col]) group_data = specs['groups'][specs['groups']].dropna(how='all', axis=1) char_data = specs['chars'][specs['chars']].dropna(how='all', axis=1) specs = pd.concat( [specs['properties'] | specs['variables'], specs['groups'], specs['chars']], axis=1) df_data = pd.concat([result_out, group_data, char_data], axis=1) for col in char_data.columns: for row in char_data.index: component = nw.get_comp(row) if char_data.loc[row, col]: data = component.get_attr(col) figures += [get_char_specification( component, col, data, rpt['path'])] data_dict_gcp = {} group_elements = [] for col in group_data.columns: for row in group_data.index: component = nw.get_comp(row) if group_data.loc[row, col]: data = component.get_attr(col) for element in data.elements: element_data = component.get_attr(element) figures += [get_char_specification( component, element, element_data, rpt['path'], group=col)] elements = [el for el in data.elements if el in df_data.columns] data_dict_gcp[col] = df_data[elements] group_elements += data.elements # remove gouped parameters from main parameter list df_data = df_data[ [col for col in df_data.columns if col not in group_elements]] if len(df_data.index) == 0: return '' # replace column headers for col in df_data.columns: if any(specs[col]) and col not in group_elements: data = nw.get_comp(row).get_attr(col) if data.latex is None: df_data[col] = np.nan else: col_headers[col] = ( col.replace('_', r'\_') + r' (\ref{eq:' + cp + '_' + col + '})') equations += data.latex(col, **data.func_params) + '\n\n' else: col_headers[col] = col.replace('_', r'\_') df_data.dropna(how='all', axis=1, inplace=True) df_data.rename(columns=col_headers, inplace=True) if rpt['include_results']: latex = r'\subsubsection{Specifications and results}' + '\n\n' else: latex = r'\subsubsection{Inputs specified}' + '\n\n' caption = 'Parameters of components of type ' + cp num_col = len(df_data.columns) latex += create_latex_table(df_data, caption, col_fmt='l' + num_col * 'r') # # get parameter groups tables for param, data in data_dict_gcp.items(): df_data_gcp = pd.DataFrame(data, dtype='object') if df_data_gcp.size > 0: for col in df_data_gcp.columns: col_headers[col] = col.replace('_', r'\_') df_data_gcp.rename(columns=col_headers, inplace=True) caption = 'Parametergroup ' + param.replace('_', r'\_') latex += create_latex_table(df_data_gcp, caption) # write equations and figures of characteristics applied if equations != '': latex += r'\subsubsection{Equations applied}' + '\n\n' latex += equations latex += place_figures([fig for fig in figures if fig is not None]) return latex
[docs] def document_busses(nw, rpt): """Document bus specifications. Parameters ---------- nw : tespy.networks.network.Network TESPy model. rpt : dict Formatting data for the report. Returns ------- latex : str LaTeX code for all busses. """ if len(nw.busses) > 0: latex = r'\section{Busses in ' + nw.mode + ' mode}' + '\n\n' else: return '' chars_plotted = {} fmt = rpt['Bus']['float_fmt'] for label, b in nw.busses.items(): if rpt['include_results']: df = nw.results[label][ ['component value', 'bus value', 'efficiency']].copy() df.loc['total'] = df.sum() df.loc['total', 'efficiency'] = np.nan df.loc['total', 'component value'] = ( fmt.format(df.loc['total', 'component value'])) if b.P.is_set: df.loc['total', 'bus value'] = ( r'\bftab' + fmt.format( df.loc['total', 'bus value'])) else: df.loc['total', 'bus value'] = ( fmt.format(df.loc['total', 'bus value'])) else: df = pd.DataFrame( columns=['comp eq', 'bus eq', 'eta ref'], dtype='object') figures = [] for cp in b.comps.index: if rpt['include_results']: # format cols df.loc[cp.label, 'bus value'] = ( fmt.format(df.loc[cp.label, 'bus value'])) df.loc[cp.label, 'component value'] = ( fmt.format(df.loc[cp.label, 'component value'])) df.loc[cp.label, 'efficiency'] = ( fmt.format(df.loc[cp.label, 'efficiency'])) cp_data = b.comps.loc[cp] char = cp_data['char'] if np.all(char.y == char.y[0]): if rpt['include_results']: eta = np.nan else: eta = fmt.format(char.y[0]) else: key = (char, cp_data['base']) if key in chars_plotted: eta = ( r'$f\left(X\right)$ (\ref{fig:' + chars_plotted[key]['label'] + '})') else: chars_plotted[key] = { 'path': 'figures/Bus_CharLine_' + cp.label.replace(' ', '_') + nw.mode + '.pdf', 'label': 'Bus_CharLine_' + cp.label + nw.mode } figname = rpt['path'] + chars_plotted[key]['path'] if nw.mode == 'design': xlabel = ( r'Energy flow ratio $X$ ($X=1$ in design mode)') elif cp_data['base'] == 'bus': xlabel = ( r'Energy flow ratio $X=\frac{\dot{E}_' r'\mathrm{bus}}{\dot{E}_\mathrm{bus,design}}$') else: xlabel = ( r'Energy flow ratio $X=\frac{\dot{E}_\mathrm{' r'comp}}{\dot{E}_\mathrm{comp,design}}$') ylabel = r'Efficiency $\eta$' char.plot(figname, '', xlabel, ylabel) figures += [create_latex_figure( chars_plotted[key]['path'], 'Bus efficiency characteristic', chars_plotted[key]['label'])] eta = ( r'$f\left(X\right)$ (\ref{fig:' + chars_plotted[key]['label'] + '})') comp_eq = cp.bus_func_doc(cp_data) if comp_eq is None: df.loc[cp.label, 'comp eq'] = np.nan df.loc[cp.label, 'bus eq'] = np.nan df.loc[cp.label, 'eta ref'] = np.nan continue df.loc[cp.label, 'comp eq'] = '$' + comp_eq + '$' if cp_data['base'] == 'bus': eq = r'$\frac{\dot{E}_\mathrm{comp}}{\eta}$' else: eq = r'$\dot{E}_\mathrm{comp} \cdot \eta$' df.loc[cp.label, 'bus eq'] = eq df.loc[cp.label, 'eta ref'] = eta if all(df['comp eq'].isnull()): continue # reorder and rename columns if rpt['include_results']: col_order = [ 'comp eq', 'component value', 'bus eq', 'bus value', 'eta ref', 'efficiency'] df = df[col_order] rename_dict = { 'component value': r'$\dot{E}_\mathrm{comp,result}$', 'bus value': r'$\dot{E}_\mathrm{bus,result}$', 'efficiency': r'$\eta_\mathrm{result}$', 'comp eq': r'$\dot{E}_\mathrm{comp}$', 'bus eq': r'$\dot{E}_\mathrm{bus}$', 'eta ref': r'$\eta$' } df.rename(columns=rename_dict, inplace=True) df = data_to_df(df) latex += r'\subsection{Bus ``' + label + '\'\'}\n\n' if b.P.is_set: latex += ( r'Specified total value of energy flow:' r' $\dot{E}_\mathrm{bus} = \unit[' + fmt.format(b.P.val) + ']{W}$\n\n') eq = r'0=\dot{E}_\mathrm{bus} -\sum_i \dot{E}_{\mathrm{bus,}i}' latex += generate_latex_eq(b, eq, 'energy_flow_sum') + '\n\n' else: latex += 'This bus is used for postprocessing only.\n\n' num_col = len(df.columns) latex += create_latex_table( df, 'Results overview for bus ' + label, col_fmt='l' + num_col * 'r') + '\n\n' latex += place_figures(figures) return latex
[docs] def data_to_df(data): """Create pandas DataFrame from list of dictionaries, remove nan columns. Parameters ---------- data : list Rows for the DataFrame. Returns ------- df : pandas.core.frame.DataFrame Polished DataFrame. """ if not isinstance(data, pd.DataFrame): df = pd.DataFrame(data, dtype='object') else: df = data to_drop = [n for n in df.columns if n != 'label'] df.dropna(subset=to_drop, how='all', axis=0, inplace=True) df.dropna(how='all', axis=1, inplace=True) return df
[docs] def create_latex_table(df, caption, col_fmt=None): """Create LaTeX table environment from DataFrame df. Parameters ---------- df : pandas.core.frame.DataFrame DataFrame to export. caption : str Caption for the table. Returns ------- latex : str LaTeX code for table. """ df['label'] = df.index.astype('str') df['label'] = df['label'].str.replace('_', r'\_') df.set_index('label', inplace=True) try: df.replace({'nan': '-'}, inplace=True) except TypeError: # dataframes with bool data only pass longtable = False if len(df.index) > 60: longtable = True with pd.option_context('max_colwidth', 2000): latex = df.to_latex( index=True, escape=False, na_rep='-', column_format=col_fmt, longtable=longtable, caption=caption, position='H') return latex
[docs] def create_latex_figure(path, caption, label): """Create LaTeX figure environment. Parameters ---------- path : str Path to the figure. caption : str Caption of the figure. label : str LaTeX label for the figure. Returns ------- latex : str LaTeX code for figure. """ latex = '' latex += r'\begin{figure}[H]\begin{center}' + '\n' latex += r'\includegraphics[width=\textwidth]{' + path + '}' + '\n' latex += r'\caption{' + caption + '}' + '\n' latex += r'\label{fig:' + label + '}' + '\n' latex += r'\end{center}\end{figure}' + '\n\n' return latex
[docs] def generate_latex_eq(obj, eqn, label): """Generate LaTeX code for equations. Parameters ---------- obj : object Object equation is applied for. eqn : str LaTeX code of the equation core. label : str LaTeX label for the equation. Returns ------- latex : str LaTeX code for equation. """ latex = ( r'\begin{equation}' + '\n' + r'\label{eq:' + obj.__class__.__name__ + '_' + label + r'}' + '\n' ) latex += eqn + '\n' latex += r'\end{equation}' return latex
[docs] def create_latex_CharLine(component, param, data, path, group=None): """Generate image and create LaTeX code for CharLine documentation. Parameters ---------- component : object Component or Bus object the characteristics are applied on. param : str Name of the parameter holding the CharLine information. data : tespy.tools.data_containers.ComponentCharacteristics DataContainer holding the CharLine information. path : str Basepath of the report. group : str Name of the group if the parameter is part of a group, else None. Returns ------- latex : str LaTeX code for figure. """ cp = component.__class__.__name__ if group is None: group = param local_path = ( 'figures/' + cp + '_CharLine_' + param + '_' + component.label.replace(' ', '_') + '.pdf') figname = os.path.join(path, local_path) xlabel = ( r'$X=' + component.get_char_expr_doc( data.param, **data.char_params) + '$') ylabel = r'$f\left(X\right)$' data.char_func.plot(figname, '', xlabel, ylabel) return create_latex_figure( local_path, 'Characteristics of ' + component.label.replace('_', r'\_') + r' (eq. \ref{eq:' + cp + '_' + group + '})', 'CharLine_' + param + '_' + component.label)
[docs] def create_latex_CharMap(component, param, data, path, group=None): """Generate image and create LaTeX code for CharMap documentation. Parameters ---------- component : object Component or Bus object the characteristics are applied on. param : str Name of the parameter holding the CharLine information. data : tespy.tools.data_containers.ComponentCharacteristicMaps DataContainer holding the CharMap information. path : str Basepath of the report. group : str Name of the group if the parameter is part of a group, else None. Returns ------- latex : str LaTeX code for figure. """ cp = component.__class__.__name__ if group is None: group = param local_path = ( 'figures/' + cp + '_CharMap_' + param + '_' + component.label.replace(' ', '_') + '.pdf') figname = os.path.join(path, local_path) xlabel = ('$Y$') ylabel = r'$f\left(Y,\vec{Y},\vec{Z}\right)$' data.char_func.plot(figname, '', xlabel, ylabel) return create_latex_figure( local_path, 'Characteristics of ' + component.label.replace('_', r'\_') + r' (eq. \ref{eq:' + cp + '_' + group + '})', 'CharMap_' + param + '_' + component.label)
[docs] def place_figures(figures): """Generate LaTeX code for figure placement. Parameters ---------- figures : list List holding LaTeX code of individual figures to be placed in document. Returns ------- latex : str LaTeX code for figure alignment. """ latex = '' num_per_row = 2 num_rows = len(figures) // num_per_row + 1 for row in range(num_rows): for figure in figures[num_per_row * row:num_per_row * (row + 1)]: latex += ( r'\begin{minipage}{' + str(1 / num_per_row) + r'\textwidth}' + '\n') latex += figure latex += r'\end{minipage}' + '\n' latex += '\n' return latex
[docs] def get_char_specification(component, param, data, path, group=None): """Get CharLine or CharMap plotting latex code. Parameters ---------- component : object Component or Bus object the characteristics are applied on. param : str Name of the parameter holding the CharLine information. data : tespy.tools.data_containers.DataContainer DataContainer holding the CharMap or CharLine information. path : str Basepath of the report. group : str Name of the group if the parameter is part of a group, else None. Returns ------- latex : str LaTeX code for characteristic figures. """ if isinstance(data, dc_cc): return create_latex_CharLine(component, param, data, path, group=group) elif isinstance(data, dc_cm): return create_latex_CharMap(component, param, data, path, group=group)